oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 10 of 39 matches for " Iduna Arduini "
All listed articles are free for downloading (OA Articles)
Page 1 /39
Display every page Item
Remobilization of Dry Matter and Nitrogen in Maize as Affected by Hybrid Maturity Class
Silvia Pampana,Laura Ercoli,Alessandro Masoni,Iduna Arduini
Italian Journal of Agronomy , 2007, DOI: 10.4081/ija.2009.39
Abstract: The length of the growing cycle is one of the most important traits determining hybrid adaptability to the environment. The objective of this research was to compare in a field trial the pattern of dry matter and nitrogen accumulation and remobilization of four commercial maize hybrids belonging to FAO maturity group 400, 500, 600 and 700. The duration of the periods emergence-silking and silking-physiological maturity increased with the increase of hybrid maturity class. Silking occurred 6 days later in the latest maturing hybrid than in the earliest one, and physiological maturity 21 days later. Hybrids differed for biomass production at silking and at physiological maturity. At silking, plant dry weight and leaf area increased with hybrid maturity, owing to greater leaves and stalks. The lengthening of the period emergence-silking allowed a greater accumulation of assimilates in the plant, thus increasing the source of remobilization in the following period. The increase of the length of the period silking-maturity from hybrid 400 to hybrid 700 brought to an increase of dry matter accumulation coupled to a reduction of dry matter remobilization. Increases in hybrid maturity class resulted also in an increase of post-silking N uptake and N remobilization from vegetative plant parts. Thus, the longer period silking-maturity was associated with an increased photosynthetic activity of the plant, which hampered the rate of leaf senescence and deterred the mobilization of reserve carbohydrates for grain filling. Conversely, the longer was the hybrid cycle, the greater was the quantity of both N uptake from soil and remobilized N from vegetative plant parts.
Accumulation of Dry Matter and Nitrogen in Durum Wheat During Grain Filling as Affected by Temperature and Nitrogen Rate
Laura Ercoli,Alessandro Masoni,Marco Mariotti,Iduna Arduini
Italian Journal of Agronomy , 2011, DOI: 10.4081/ija.2009.1.3
Abstract: Durum wheat (Triticum durum Desf.) is commonly grown in mediterranean conditions, where temperature stress during grain filling can limit productivity. This study was conducted to assess the effect of optimal and too high temperature during grain filling on the patterns of accumulation of dry matter and N of durum wheat plants grown at different levels of N fertilization. Two durum wheat varieties, Appio and Creso, were grown in controlled environment conditions and in pots with three rates of nitrogen fertilizer (not applied, normal amount, and high amount) and two air temperature regimes during grain filling (20/15 °C and 28/23 °C day/night). Results showed that the duration of the intervals between the main maturity stages within grain filling were both genotype-specific and temperature- dependent, while N rate did not modify the timing of grain development. The two genotypes responded to temperature by increasing the rate of development, but the thermal timing of development was unchanged with the two temperature regimes. The higher temperature reduced grain growth and increased N accumulation in grain. However, these effects were recorded only in fertilized plants. Nitrogen availability modified the growth of the plant during the whole cycle, in that increased N fertilizer at seeding resulted in a greater plant size at anthesis and in a greater accumulation rate of dry matter and N in grain during grain filling. Grain yield and kernel weight were better expressed at 20/15 °C, while grain protein concentration was favoured under the 28/23 °C temperature regime. Nitrogen fertilization increased the sensitivity of plants to high temperature. Thus, the role of N fertilization under heat stress may be more important than under optimal temperatures.
Remobilization of Dry Matter and Nitrogen in Maize as Affected by Hybrid Maturity Class
Silvia Pampana,Laura Ercoli,Alessandro Masoni,Iduna Arduini
Italian Journal of Agronomy , 2011, DOI: 10.4081/ija.2009.2.39
Abstract: The length of the growing cycle is one of the most important traits determining hybrid adaptability to the environment. The objective of this research was to compare in a field trial the pattern of dry matter and nitrogen accumulation and remobilization of four commercial maize hybrids belonging to FAO maturity group 400, 500, 600 and 700. The duration of the periods emergence-silking and silking-physiological maturity increased with the increase of hybrid maturity class. Silking occurred 6 days later in the latest maturing hybrid than in the earliest one, and physiological maturity 21 days later. Hybrids differed for biomass production at silking and at physiological maturity. At silking, plant dry weight and leaf area increased with hybrid maturity, owing to greater leaves and stalks. The lengthening of the period emergence-silking allowed a greater accumulation of assimilates in the plant, thus increasing the source of remobilization in the following period. The increase of the length of the period silking-maturity from hybrid 400 to hybrid 700 brought to an increase of dry matter accumulation coupled to a reduction of dry matter remobilization. Increases in hybrid maturity class resulted also in an increase of post-silking N uptake and N remobilization from vegetative plant parts. Thus, the longer period silking-maturity was associated with an increased photosynthetic activity of the plant, which hampered the rate of leaf senescence and deterred the mobilization of reserve carbohydrates for grain filling. Conversely, the longer was the hybrid cycle, the greater was the quantity of both N uptake from soil and remobilized N from vegetative plant parts.
Forage potential of winter cereal/legume intercrops in organic farming
Marco Mariotti,Alessandro Masoni,Laura Ercoli,Iduna Arduini
Italian Journal of Agronomy , 2011, DOI: 10.4081/ija.2006.403
Abstract: This research was performed to assess the potential of cereal/legume intercropping to enhance forage yield and quality when compared with cereal sole crops under the constrains imposed by UE organic farming regulations. Sole crops (SC) and intercrops (IC) of two winter cereals, barley (Hordeum vulgare L.) and durum wheat (Triticum durum Desf.), and two legumes, white lupin (Lupinus albus L.) and common vetch (Vicia sativa L.), were evaluated at two harvest times for dry matter yield (DMY), crude protein concentration (CPC), and nitrogen yield (NY). Yield values and dry matter concentration (DMC) were generally higher when cereals were at the hard dough compared to the late milk stage. On average, intercropping increased forage yield by 72%, NY by 190%, and CPC by 40 g kg-1, compared to cereal sole crops, but the choice of legume species affected the yield advantage and the composition of forage. Land equivalent ratio (LER) of intercrops was always higher than 1, ranging from 1.39 to 1.61. Intercropping also enhanced weed suppression, compared to sole crop.
Forage potential of winter cereal/legume intercrops in organic farming
Marco Mariotti,Alessandro Masoni,Laura Ercoli,Iduna Arduini
Italian Journal of Agronomy , 2011, DOI: 10.4081/ija.2006.403
Abstract: This research was performed to assess the potential of cereal/legume intercropping to enhance forage yield and quality when compared with cereal sole crops under the constrains imposed by UE organic farming regulations. Sole crops (SC) and intercrops (IC) of two winter cereals, barley (Hordeum vulgare L.) and durum wheat (Triticum durum Desf.), and two legumes, white lupin (Lupinus albus L.) and common vetch (Vicia sativa L.), were evaluated at two harvest times for dry matter yield (DMY), crude protein concentration (CPC), and nitrogen yield (NY). Yield values and dry matter concentration (DMC) were generally higher when cereals were at the hard dough compared to the late milk stage. On average, intercropping increased forage yield by 72%, NY by 190%, and CPC by 40 g kg-1, compared to cereal sole crops, but the choice of legume species affected the yield advantage and the composition of forage. Land equivalent ratio (LER) of intercrops was always higher than 1, ranging from 1.39 to 1.61. Intercropping also enhanced weed suppression, compared to sole crop.
Accumulation of Dry Matter and Nitrogen in Durum Wheat During Grain Filling as Affected by Temperature and Nitrogen Rate
Laura Ercoli,Alessandro Masoni,Marco Mariotti,Iduna Arduini
Italian Journal of Agronomy , 2009, DOI: 10.4081/ija.2009.1.3
Abstract: Durum wheat (Triticum durum Desf.) is commonly grown in mediterranean conditions, where temperature stress during grain filling can limit productivity. This study was conducted to assess the effect of optimal and too high temperature during grain filling on the patterns of accumulation of dry matter and N of durum wheat plants grown at different levels of N fertilization. Two durum wheat varieties, Appio and Creso, were grown in controlled environment conditions and in pots with three rates of nitrogen fertilizer (not applied, normal amount, and high amount) and two air temperature regimes during grain filling (20/15 °C and 28/23 °C day/night). Results showed that the duration of the intervals between the main maturity stages within grain filling were both genotype-specific and temperature- dependent, while N rate did not modify the timing of grain development. The two genotypes responded to temperature by increasing the rate of development, but the thermal timing of development was unchanged with the two temperature regimes. The higher temperature reduced grain growth and increased N accumulation in grain. However, these effects were recorded only in fertilized plants. Nitrogen availability modified the growth of the plant during the whole cycle, in that increased N fertilizer at seeding resulted in a greater plant size at anthesis and in a greater accumulation rate of dry matter and N in grain during grain filling. Grain yield and kernel weight were better expressed at 20/15 °C, while grain protein concentration was favoured under the 28/23 °C temperature regime. Nitrogen fertilization increased the sensitivity of plants to high temperature. Thus, the role of N fertilization under heat stress may be more important than under optimal temperatures.
Diffusione molecolare neLl' alta atmosfera
C. ARDUINI
Annals of Geophysics , 1963, DOI: 10.4401/ag-5230
Abstract: Le perturbazioni indotte nell'alta atmosfera dall'emissione, a mezzo di razzi sonda, di nubi di vapori estranei sono un utile mezzo per lo studio simultaneo di alcune caratteristiche fisiche e dinamiche degli alti strati. La presente relazione illustra in breve i principi di alcune tecniche per la misura del coefficiente di diffusione binaria tra l'aria e il vapore della nube artificiale.
Preclinical Efficacy of Nimotuzumab, an Anti-Egfr Monoclonal Antibody as a Single Agent Therapy in Human GBM u87mg Xenografts  [PDF]
Arlhee Diaz, Rances Blanco, Margit Lemm, Iduna Fichtner, Kalet Leon, Enrique Montero
Journal of Cancer Therapy (JCT) , 2012, DOI: 10.4236/jct.2012.34035
Abstract: Background: The poor prognosis of patients with high-grade glioma multiform (GBM) has led investigators to the search of new therapeutic strategies. Current treatment includes surgery when possible, radiotherapy and chemotherapy. Molecular-targeted therapies are in the process of clinical testing, and promising agents include monoclonal antibodies. Our study examined the antitumor activity of three different single therapies in nude mice bearing both subcutaneous and orthotopic brain xenografts of the U87MG human GBM cell line. Methods: Cell culture, Histology, Immunohistochemistry, Animal experiments, Statistical analysis. Results: Different groups of treatment included nimotuzumab, a humanized monoclonal antibody that inhibits the EGFR tyrosine kinase activity, or total body irradiation, or the chemotherapeutic agent temozolomide (TMZ). For the control group animals received saline solution instead of the antibody. For the subcutaneous model, only nimotuzumab or TMZ produced a significant delay in tumor growth. In the intracranial model, unlike TMZ, the systemic administration of the antibody did not reduce the tumor growth, despite both therapies inhibited the formation of microsatellites in the brain of mice. The antitumor activity of nimotuzumab was accompanied by a decrease in the microvessel density and the proliferative activity of tumor cells. TMZ only inhibited the tumor cell proliferation but not the formation of new tumor-associated microvessels in xenografts. For radiation therapy, neither antiproliferative nor antiangiogenic activity was found, in accordance with the lack of antitumor activity. Only nimotuzumab reduced the frequency of chemo and radioresistant CD133+ population. Conclusion: Our results illustrate the potential efficacy of nimotuzumab as a single agent against an EGFR-amplified human GBM, a tumor resistant to the therapy with all well-known forms of treatment.
Response of Patient-Derived Non-Small Cell Lung Cancer Xenografts to Classical and Targeted Therapies Is Not Related to Multidrug Resistance Markers
Jana Rolff,Cornelia Dorn,Johannes Merk,Iduna Fichtner
Journal of Oncology , 2009, DOI: 10.1155/2009/814140
Abstract: Tumor cells that are nonsensitive to anticancer drugs frequently have a multidrug resistant (MDR) phenotype. Many studies with cell lines and patient material have been done to investigate the impact of different resistance markers at protein and mRNA level in drug resistance but with contradictory outcome. In the present study, 26 well-characterised patient-derived non-small cell lung cancer xenografts were used. The known chemosensitivity to etoposide, carboplatin, gemcitabine, paclitaxel and erlotinib was compared to the protein and mRNA expression of BCRP, LRP, MDR1, and MRP1. Further, four of these xenografts were short-term treated to analyse possible regulation mechanisms after therapeutic interventions. We found a borderline correlation between the bcrp mRNA expression and the response of xenografts to etoposide. All other constitutive mRNA and protein expression levels were not correlated to any drug response and were not significantly influenced by a short term treatment. The present results indicate that the expression levels of MDR proteins and mRNA investigated do not play an important role in the chemoresistance of NSCLC in the in vivo situation.
Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology
Brigitte L. Arduini, Glen R. Gallagher, Paul D. Henion
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0002845
Abstract: The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology.
Page 1 /39
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.