Abstract:
A discrete Fourier analysis on the fundamental domain $\Omega_d$ of the $d$-dimensional lattice of type $A_d$ is studied, where $\Omega_2$ is the regular hexagon and $\Omega_3$ is the rhombic dodecahedron, and analogous results on $d$-dimensional simplex are derived by considering invariant and anti-invariant elements. Our main results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the simplex is shown to satisfy an explicit compact formula and the Lebesgue constant of the interpolation is shown to be in the order of $(\log n)^d$. The basic trigonometric functions on the simplex can be identified with Chebyshev polynomials in several variables already appeared in literature. We study common zeros of these polynomials and show that they are nodes for a family of Gaussian cubature formulas, which provides only the second known example of such formulas.

Abstract:
A discrete Fourier analysis on the dodecahedron is studied, from which results on a tetrahedron is deduced by invariance. The results include Fourier analysis in trigonometric functions, interpolation and cubature formulas on these domains. In particular, a trigonometric Lagrange interpolation on the tetrahedron is shown to satisfy an explicit compact formula and the Lebesgue constant of the interpolation is shown to be in the order of $(\log n)^3$.

Abstract:
The discrete Fourier analysis on the 30°-60°-90° triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group G2, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of m-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.

Abstract:
Rigorously promoting the intensive use of land of industrial zone is of great significance to relieve the contradiction of land supply and demand, and even to guarantee the comprehensive coordinated and sustainable development of local economy and society. This article takes the Linhai Industrial Zone in Xingcheng, Liaoning province as the research object. Combined with the local reality, this essay selects 6 level two indexes and 14 level three indexes from three aspects including the situation of land utilization, land use efficiency and management performance to make an evaluation system and uses the Delphi method to determine the index weight and the evaluation factor score, and to evaluate the intensive use level of lands in the development zone. The results show that the industrial park land intensive utilization degree is the medium level; the land development and utilization intensity is relatively high; land use structure is not reasonable; the land use efficiency still remains to rise.

Abstract:
Click chemistry is an efficient and chemoselective synthetic method for coupling molecular fragments under mild reaction conditions. Since the advent in 2001 of methods to improve stereochemical conservation, the click chemistry approach has been broadly used to construct diverse chemotypes in both chemical and biological fields. In this review, we discuss the application of click chemistry in peptide-based drug design. We highlight how triazoles formed by click reactions have been used for mimicking peptide and disulfide bonds, building secondary structural components of peptides, linking functional groups together, and bioconjugation. The progress made in this field opens the way for synthetic approaches to convert peptides with promising functional leads into structure-minimized and more stable forms.

Abstract:
Several problems of trigonometric approximation on a hexagon and a triangle are studied using the discrete Fourier transform and orthogonal polynomials of two variables. A discrete Fourier analysis on the regular hexagon is developed in detail, from which the analysis on the triangle is deduced. The results include cubature formulas and interpolation on these domains. In particular, a trigonometric Lagrange interpolation on a triangle is shown to satisfy an explicit compact formula, which is equivalent to the polynomial interpolation on a planer region bounded by Steiner's hypocycloid. The Lebesgue constant of the interpolation is shown to be in the order of $(\log n)^2$. Furthermore, a Gauss cubature is established on the hypocycloid.

Abstract:
Several cubature formulas on the cubic domains are derived using the discrete Fourier analysis associated with lattice tiling, as developed in \cite{LSX}. The main results consist of a new derivation of the Gaussian type cubature for the product Chebyshev weight functions and associated interpolation polynomials on $[-1,1]^2$, as well as new results on $[-1,1]^3$. In particular, compact formulas for the fundamental interpolation polynomials are derived, based on $n^3/4 +\CO(n^2)$ nodes of a cubature formula on $[-1,1]^3$.

Abstract:
A discrete Fourier analysis associated with translation lattices is developed recently by the authors. It permits two lattices, one determining the integral domain and the other determining the family of exponential functions. Possible choices of lattices are discussed in the case of lattices that tile $\RR^2$ and several new results on cubature and interpolation by trigonometric, as well as algebraic, polynomials are obtained.

Abstract:
The discrete Fourier analysis on the $30^{\degree}$-$60^{\degree}$-$90^{\degree}$ triangle is deduced from the corresponding results on the regular hexagon by considering functions invariant under the group $G_2$, which leads to the definition of four families generalized Chebyshev polynomials. The study of these polynomials leads to a Sturm-Liouville eigenvalue problem that contains two parameters, whose solutions are analogues of the Jacobi polynomials. Under a concept of $m$-degree and by introducing a new ordering among monomials, these polynomials are shown to share properties of the ordinary orthogonal polynomials. In particular, their common zeros generate cubature rules of Gauss type.