Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 4 )

2019 ( 219 )

2018 ( 320 )

2017 ( 296 )

Custom range...

Search Results: 1 - 10 of 297630 matches for " Harm J. Krugers "
All listed articles are free for downloading (OA Articles)
Page 1 /297630
Display every page Item
Regulation of Excitatory Synapses and Fearful Memories by Stress Hormones
Harm J. Krugers
Frontiers in Behavioral Neuroscience , 2011, DOI: 10.3389/fnbeh.2011.00062
Abstract: Memories for emotionally arousing and fearful events are generally well retained. From the evolutionary point of view this is a highly adaptive behavioral response aimed to remember relevant information. However, fearful memories can also be inappropriately and vividly (re)expressed, such as in posttraumatic stress disorder. The memory formation of emotionally arousing events is largely modulated by hormones, peptides, and neurotransmitters which are released during and after exposure to these conditions. One of the core reactions in response to a stressful situation is the rapid activation of the autonomic nervous system, which results in the release of norepinephrine in the brain. In addition, stressful events stimulate the hypothalamus–pituitary–adrenal axis which slowly increases the release of glucocorticoid hormones from the adrenal glands. Here we will review how glucocorticoids and norepinephrine regulate the formation of fearful memories in rodents and humans and how these hormones can facilitate the storage of information by regulating excitatory synapses.
LTP after Stress: Up or Down?
Marian Jo ls,Harm J. Krugers
Neural Plasticity , 2007, DOI: 10.1155/2007/93202
Abstract: When an organism is exposed to a stressful situation, corticosteroid levels in the brain rise. This rise has consequences for behavioral performance, including memory formation. Over the past decades, it has become clear that a rise in corticosteroid level is also accompanied by a reduction in hippocampal long-term potentiation (LTP). Recent studies, however, indicate that stress does not lead to a universal suppression of LTP. Many factors, including the type of stress, the phase of the stress response, the area of investigation, type of LTP, and the life history of the organism determine in which direction LTP will be changed.
Interactions between noradrenaline and corticosteroids in the brain: from electrical activity to cognitive performance
Harm J. Krugers,Henk Karst,Marian Joels
Frontiers in Cellular Neuroscience , 2012, DOI: 10.3389/fncel.2012.00015
Abstract: One of the core reactions in response to a stressful situation is the activation of the hypothalamus–pituitary–adrenal axis which increases the release of glucocorticoid hormones from the adrenal glands. In concert with other neuro-modulators, such as (nor)adrenaline, these hormones enable and promote cognitive adaptation to stressful events. Recent studies have demonstrated that glucocorticoid hormones and noradrenaline, via their receptors, can both rapidly and persistently regulate the function of excitatory synapses which are critical for storage of information. Here we will review how glucocorticoids and noradrenaline alone and in synergy dynamically tune these synapses in the hippocampus and amygdala, and discuss how these hormones interact to promote behavioral adaptation to stressful situations.
Blocking Mineralocorticoid Receptors prior to Retrieval Reduces Contextual Fear Memory in Mice
Ming Zhou, Merel Kindt, Marian Jo?ls, Harm J. Krugers
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0026220
Abstract: Background Corticosteroid hormones regulate appraisal and consolidation of information via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) respectively. How activation of these receptors modulates retrieval of fearful information and the subsequent expression of fear is largely unknown. We tested here whether blockade of MRs or GRs during retrieval also affects subsequent expression of fear memory. Methodology/Principal Findings Mice were trained in contextual or tone cue fear conditioning paradigms, by pairing mild foot shocks with a particular context or tone respectively. Twenty-four hours after training, context-conditioned animals were re-exposed to the context for 3 or 30 minutes (day 2); tone-conditioned animals were placed in a different context and re-exposed to one or six tones. Twenty-four hours (day 3) and one month later, freezing behavior to the aversive context/tone was scored again. MR or GR blockade was achieved by giving spironolactone or RU486 subcutaneously one hour before retrieval on day 2. Spironolactone administered prior to brief context re-exposure reduced freezing behavior during retrieval and 24 hours later, but not one month later. Administration of spironolactone without retrieval of the context or immediately after retrieval on day 2 did not reduce freezing on day 3. Re-exposure to the context for 30 minutes on day 2 significantly reduced freezing on day 3 and one month later, but freezing was not further reduced by spironolactone. Administration of spironolactone prior to tone-cue re-exposure on day 2 did not affect freezing behavior. Treatment with RU486 prior to re-exposure did not affect context or tone-cue fear memories at any time point. Conclusions/Significance We conclude that MR blockade prior to retrieval strongly reduces the expression of contextual fear, implying that MRs, rather than GRs, play an important role in retrieval of emotional information and subsequent fear expression.
Opposite Effects of Early Maternal Deprivation on Neurogenesis in Male versus Female Rats
Charlotte A. Oomen, Carlos E. N. Girardi, Rudy Cahyadi, Eva C. Verbeek, Harm Krugers, Marian Jo?ls, Paul J. Lucassen
PLOS ONE , 2009, DOI: 10.1371/journal.pone.0003675
Abstract: Background Major depression is more prevalent in women than in men. The underlying neurobiological mechanisms are not well understood, but recent data shows that hippocampal volume reductions in depressed women occur only when depression is preceded by an early life stressor. This underlines the potential importance of early life stress, at least in women, for the vulnerability to develop depression. Perinatal stress exposure in rodents affects critical periods of brain development that persistently alter structural, emotional and neuroendocrine parameters in adult offspring. Moreover, stress inhibits adult hippocampal neurogenesis, a form of structural plasticity that has been implicated a.o. in antidepressant action and is highly abundant early postnatally. We here tested the hypothesis that early life stress differentially affects hippocampal structural plasticity in female versus male offspring. Principal Findings We show that 24 h of maternal deprivation (MD) at PND3 affects hippocampal structural plasticity at PND21 in a sex-dependent manner. Neurogenesis was significantly increased in male but decreased in female offspring after MD. Since no other structural changes were found in granule cell layer volume, newborn cell survival or proliferation rate, astrocyte number or gliogenesis, this indicates that MD elicits specific changes in subsets of differentiating cells and differentially affects immature neurons. The MD induced sex-specific effects on neurogenesis cannot be explained by differences in maternal care. Conclusions Our data shows that early environment has a critical influence on establishing sex differences in neural plasticity and supports the concept that the setpoint for neurogenesis may be determined during perinatal life. It is tempting to speculate that a reduced level of neurogenesis, secondary to early stress exposure, may contribute to maladaptation of the HPA axis and possibly to the increased vulnerability of women to stress-related disorders.
Mineralocorticoid Receptors Guide Spatial and Stimulus-Response Learning in Mice
J. Marit Arp, Judith P. ter Horst, Sofia Kanatsou, Guillén Fernández, Marian Jo?ls, Harm J. Krugers, Melly S. Oitzl
PLOS ONE , 2014, DOI: 10.1371/journal.pone.0086236
Abstract: Adrenal corticosteroid hormones act via mineralocorticoid (MR) and glucocorticoid receptors (GR) in the brain, influencing learning and memory. MRs have been implicated in the initial behavioral response in novel situations, which includes behavioral strategies in learning tasks. Different strategies can be used to solve navigational tasks, for example hippocampus-dependent spatial or striatum-dependent stimulus-response strategies. Previous studies suggested that MRs are involved in spatial learning and induce a shift between learning strategies when animals are allowed a choice between both strategies. In the present study, we further explored the role of MRs in spatial and stimulus-response learning in two separate circular holeboard tasks using female mice with forebrain-specific MR deficiency and MR overexpression and their wildtype control littermates. In addition, we studied sex-specific effects using male and female MR-deficient mice. First, we found that MR-deficient compared to control littermates and MR-overexpressing mice display altered exploratory and searching behavior indicative of impaired acquisition of novel information. Second, female (but not male) MR-deficient mice were impaired in the spatial task, while MR-overexpressing female mice showed improved performance in the spatial task. Third, MR-deficient mice were also impaired in the stimulus-response task compared to controls and (in the case of females) MR-overexpressing mice. We conclude that MRs are important for coordinating the processing of information relevant for spatial as well as stimulus-response learning.
Individual Variations in Maternal Care Early in Life Correlate with Later Life Decision-Making and c-Fos Expression in Prefrontal Subregions of Rats
Felisa N. van Hasselt, Leonie de Visser, Jacintha M. Tieskens, Sandra Cornelisse, Annemarie M. Baars, Marla Lavrijsen, Harm J. Krugers, Ruud van den Bos, Marian Jo?ls
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0037820
Abstract: Early life adversity affects hypothalamus-pituitary-adrenal axis activity, alters cognitive functioning and in humans is thought to increase the vulnerability to psychopathology–e.g. depression, anxiety and schizophrenia- later in life. Here we investigated whether subtle natural variations among individual rat pups in the amount of maternal care received, i.e. differences in the amount of licking and grooming (LG), correlate with anxiety and prefrontal cortex-dependent behavior in young adulthood. Therefore, we examined the correlation between LG received during the first postnatal week and later behavior in the elevated plus maze and in decision-making processes using a rodent version of the Iowa Gambling Task (rIGT). In our cohort of male and female animals a high degree of LG correlated with less anxiety in the elevated plus maze and more advantageous choices during the last 10 trials of the rIGT. In tissue collected 2 hrs after completion of the task, the correlation between LG and c-fos expression (a marker of neuronal activity) was established in structures important for IGT performance. Negative correlations existed between rIGT performance and c-fos expression in the lateral orbitofrontal cortex, prelimbic cortex, infralimbic cortex and insular cortex. The insular cortex correlations between c-fos expression and decision-making performance depended on LG background; this was also true for the lateral orbitofrontal cortex in female rats. Dendritic complexity of insular or infralimbic pyramidal neurons did not or weakly correlate with LG background. We conclude that natural variations in maternal care received by pups may significantly contribute to later-life decision-making and activity of underlying brain structures.
Stress and steroid regulation of synaptic transmission: from physiology to pathophysiology
Nicola Maggio,Harmen J. Krugers,Menahem Segal
Frontiers in Cellular Neuroscience , 2013, DOI: 10.3389/fncel.2012.00069
Dendritic Morphology of Hippocampal and Amygdalar Neurons in Adolescent Mice Is Resilient to Genetic Differences in Stress Reactivity
Anup G. Pillai, Danielle de Jong, Sofia Kanatsou, Harm Krugers, Alana Knapman, Jan-Michael Heinzmann, Florian Holsboer, Rainer Landgraf, Marian Jo?ls, Chadi Touma
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038971
Abstract: Many studies have shown that chronic stress or corticosterone over-exposure in rodents leads to extensive dendritic remodeling, particularly of principal neurons in the CA3 hippocampal area and the basolateral amygdala. We here investigated to what extent genetic predisposition of mice to high versus low stress reactivity, achieved through selective breeding of CD-1 mice, is also associated with structural plasticity in Golgi-stained neurons. Earlier, it was shown that the highly stress reactive (HR) compared to the intermediate (IR) and low (LR) stress reactive mice line presents a phenotype, with respect to neuroendocrine parameters, sleep architecture, emotional behavior and cognition, that recapitulates some of the features observed in patients suffering from major depression. In late adolescent males of the HR, IR, and LR mouse lines, we observed no significant differences in total dendritic length, number of branch points and branch tips, summated tip order, number of primary dendrites or dendritic complexity of either CA3 pyramidal neurons (apical as well as basal dendrites) or principal neurons in the basolateral amygdala. Apical dendrites of CA1 pyramidal neurons were also unaffected by the differences in stress reactivity of the animals; marginally higher length and complexity of the basal dendrites were found in LR compared to IR but not HR mice. In the same CA1 pyramidal neurons, spine density of distal apical tertiary dendrites was significantly higher in LR compared to IR or HR animals. We tentatively conclude that the dendritic complexity of principal hippocampal and amygdala neurons is remarkably stable in the light of a genetic predisposition to high versus low stress reactivity, while spine density seems more plastic. The latter possibly contributes to the behavioral phenotype of LR versus HR animals.
Chronic Stress Effects on Hippocampal Structure and Synaptic Function: Relevance for Depression and Normalization by Anti-Glucocorticoid Treatment
Harmen J. Krugers,Paul J. Lucassen,Henk Karst,Marian Jo?ls
Frontiers in Synaptic Neuroscience , 2010, DOI: 10.3389/fnsyn.2010.00024
Abstract: Exposure of an organism to environmental challenges activates two hormonal systems that help the organism to adapt. As part of this adaptational process, brain processes are changed such that appropriate behavioral strategies are selected that allow optimal performance at the short term, while relevant information is stored for the future. Over the past years it has become evident that chronic uncontrollable and unpredictable stress also exerts profound effects on structure and function of limbic neurons, but the impact of chronic stress is not a mere accumulation of repeated episodes of acute stress exposure. Dendritic trees are reduced in some regions but expanded in others, and cells are generally exposed to a higher calcium load upon depolarization. Synaptic strengthening is largely impaired. Neurotransmitter responses are also changed, e.g., responses to serotonin. We here discuss: (a) the main cellular effects after chronic stress with emphasis on the hippocampus, (b) how such effects could contribute to the development of psychopathology in genetically vulnerable individuals, and (c) their normalization by brief treatment with anti-glucocorticoids.
Page 1 /297630
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.