Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 177 )

2018 ( 286 )

2017 ( 288 )

2016 ( 283 )

Custom range...

Search Results: 1 - 10 of 149742 matches for " H. Yahagi "
All listed articles are free for downloading (OA Articles)
Page 1 /149742
Display every page Item
The Forest Method as a New Parallel Tree Method with the Sectional Voronoi Tessellation
H. Yahagi,M. Mori,Y. Yoshii
Physics , 1999, DOI: 10.1086/313250
Abstract: We have developed a new parallel tree method which will be called the forest method hereafter. This new method uses the sectional Voronoi tessellation (SVT) for the domain decomposition. The SVT decomposes a whole space into polyhedra and allows their flat borders to move by assigning different weights. The forest method determines these weights based on the load balancing among processors by means of the over-load diffusion (OLD). Moreover, since all the borders are flat, before receiving the data from other processors, each processor can collect enough data to calculate the gravity force with precision. Both the SVT and the OLD are coded in a highly vectorizable manner to accommodate on vector parallel processors. The parallel code based on the forest method with the Message Passing Interface is run on various platforms so that a wide portability is guaranteed. Extensive calculations with 15 processors of Fujitsu VPP300/16R indicate that the code can calculate the gravity force exerted on 10^5 particles in each second for some ideal dark halo. This code is found to enable an N-body simulation with 10^7 or more particles for a wide dynamic range and is therefore a very powerful tool for the study of galaxy formation and large-scale structure in the universe.
Effects of Nonuniform Outflow and Buoyancy on Drag Coefficient Acting on a Spherical Particle  [PDF]
Mariko Watanabe, Joji Yahagi
Journal of Flow Control, Measurement & Visualization (JFCMV) , 2017, DOI: 10.4236/jfcmv.2017.54008
Abstract: Pyrolysis gas jets out from the surface of a solid fuel particle when heated. This study experimentally observes the occurrence of gas jetsfrom heated solid fuel particles. Results reveal a local gas jet occurs from the particle’s surface when its temperature reaches the point at which a pyrolysis reaction occurs. To investigate the influence of the gas jet on particle motion, a numerical simulation of the uniform flow around a spherical particle with a nonuniform outflow or high surface temperature is conducted, and the drag force acting on the spherical particle is estimated. In the numerical study, the magnitude of the outflow velocity, direction of outflow, and Rayleigh number,?i.e., particle surface temperature, are altered, and outflow velocities and the Rayleigh number are set based on the experiment. The drag coefficient is found to decrease when an outflow occurs in the direction against the mainstream; this drag coefficient at a higher Rayleigh number is slightly higher than that at a Rayleigh number of zero.
N-Body Code with Adaptive Mesh Refinement
Hideki Yahagi,Yuzuru Yoshii
Physics , 2001, DOI: 10.1086/322457
Abstract: We have developed a simulation code with the techniques which enhance both spatial and time resolution of the PM method for which the spatial resolution is restricted by the spacing of structured mesh. The adaptive mesh refinement (AMR) technique subdivides the cells which satisfy the refinement criterion recursively. The hierarchical meshes are maintained by the special data structure and are modified in accordance with the change of particle distribution. In general, as the resolution of the simulation increases, its time step must be shortened and more computational time is required to complete the simulation. Since the AMR enhances the spatial resolution locally, we reduce the time step locally also, instead of shortening it globally. For this purpose we used a technique of hierarchical time steps (HTS) which changes the time step, from particle to particle, depending on the size of the cell in which particles reside. Some test calculations show that our implementation of AMR and HTS is successful. We have performed cosmological simulation runs based on our code and found that many of halo objects have density profiles which are well fitted to the universal profile proposed by Navarro, Frenk, & White (1996) over the entire range of their radius.
What are the latest developments in colorectal endoscopic submucosal dissection?
Toshio Uraoka,Yutaka Saito,Naohisa Yahagi
World Journal of Gastrointestinal Endoscopy , 2012, DOI: 10.4253/wjge.v4.i7.296
Abstract: Endoscopic submucosal dissection (ESD) enables direct submucosal dissection so that even large early-stage gastrointestinal tumors can be resected en bloc. ESD has recently been applied to the colorectum since it was originally developed for use in the stomach. However, colorectal ESD is technically more difficult with an increased risk of perforation compared with gastric ESD. In addition, this procedure is seldom performed in Western countries. Consequently, further technical advances and the availability of a suitable clinical training system are required for the extensive use of colorectal ESD. In this topic highlight, we review the most recent developments in colorectal ESD.
Application of matrix product states to the Hubbard model in one spatial dimension
Yukihiro Shimizu,Koji Matsuura,Hikaru Yahagi
Physics , 2013,
Abstract: We investigate the application of matrix product states to the Hubbard model in one spatial dimension with both of open and periodic boundary conditions. We develop the variatinal method that the optimization of the variational parameters is carried out locally and sequentially in the framework of matrix product operators (MPO) by including the sign, due to the anti-commutation relation of fermion operators, in the matrix element of MPO. The numerical accuracy of the ground state energy is examined.
Exact-Diagonalization Analysis of Composite Excitations in the t-J Model
Takashi Otaki,Yuta Yahagi,Hiroaki Matsueda
Physics , 2015,
Abstract: We examine spectral properties of doped holes dressed with surrounding spin cloud in the t-J model. These composite-hole excitations well characterize prominent band structures in the angle-resolved photoemission spectrum. In one-dimensional (1D) case at half-filling, we identify the composite operators that separately pick up the spinon and holon branches, respectively. After hole doping, we find that the composite hole excitations with string-like spins tend to be localized at k=\pi/2 in the momentum space. This means that such composite excitations should be actual electronic excitations, since the spinon and holon branches merge together at this momentum. In 2D case, we find that the composite excitations with more non-local spin fluctuation have stronger intensity near the Fermi level. The composite band structure along diagonal (0,0)-(\pi,\pi) direction in 2D has some similarity to that in 1D, and such non-local spin fluctuation plays an important role on the formation of the pseudogap in high-Tc cuprates.
Crossover temperature of the spin-1/2 XXZ chain with an impurity
Ryoko Yahagi,Jun Sato,Tetsuo Deguchi
Physics , 2015,
Abstract: We study exactly the effect of an impurity in the interacting quantum spin chain at low temperature by solving the integrable spin-1/2 XXZ periodic chain with an impurity through the algebraic and thermal Bethe ansatz methods. In particular, we investigate how the crossover temperature for the impurity specific heat depends on the impurity parameter, i.e. the coupling of the impurity to other spins, and show that it is consistent with the analytic expression that is obtained by setting the impurity susceptibility to be proportional to the inverse of the crossover temperature. In the model, two types of crossover behavior appear: one from the high-temperature regime to the low-temperature Kondo regime and another from the N-site homogeneous chain to the (N-1)-site chain with a decoupled free impurity spin, with respect to the temperature and the impurity parameter, respectively.
Finite-temperature behavior of an impurity in the spin-1/2 XXZ chain
Ryoko Yahagi,Jun Sato,Tetsuo Deguchi
Statistics , 2014, DOI: 10.1088/1742-5468/2014/11/P11020
Abstract: We study the zero- and the finite-temperature behavior of the integrable spin-1/2 XXZ periodic chain with an impurity by the algebraic and thermal Bethe ansatz methods. We evaluate the impurity local magnetization at zero temperature analytically and derive the impurity susceptibility exactly from it. In the graphs of the impurity specific heat versus temperature, we show how the impurity spin becomes more liberated from the bulk many-body effect as the exchange coupling between the impurity spin and other spins decreases, and also that in low temperature it couples strongly to them such as the Kondo effect. Thus, we observe not only the crossover behavior from the high- to the low-temperature regime but also another one from the $N$-site chain to the $(N-1)$-site chain with a free impurity spin. We also show that the estimate of the Wilson ratio at a given low temperature is independent of the impurity parameter if its absolute value is small enough with respect to the temperature, and the universality class is described by the XXZ anisotropy in terms of the dressed charge.
Energy-momentum conservation laws in Finsler/Kawaguchi Lagrangian formulation
Takayoshi Ootsuka,Ryoko Yahagi,Muneyuki Ishida,Erico Tanaka
Physics , 2014, DOI: 10.1088/0264-9381/32/16/165016
Abstract: We reformulate the standard Lagrangian formalism to a reparameterisation invariant Lagrangian formalism by means of Finsler and Kawaguchi geometry. In our formalism, various types of symmetries that appears in theories of physics are expressed geometrically by symmetries of Finsler (Kawaguchi) metric, and the conservation law of energy-momentum is a part of Euler-Lagrange equations. The application to scalar field, Dirac field, electromagnetic field and general relativity coupled to perfect fluid (added: ver.3) are discussed. By this formalism, we try to propose an alternative definition of energy-momentum current of gravity.
Oral Administration of Ren-Shen-Yang-Rong-Tang ‘Ninjin’yoeito’ Protects against Hematotoxicity and Induces Immature Erythroid Progenitor Cells in 5-Fluorouracil-Induced Anemia
Fumihide Takano,Yasuyuki Ohta,Tomoaki Tanaka,Kenroh Sasaki,Kyoko Kobayashi,Tomoya Takahashi,Nobuo Yahagi,Fumihiko Yoshizaki,Shinji Fushiya,Tomihisa Ohta
Evidence-Based Complementary and Alternative Medicine , 2009, DOI: 10.1093/ecam/nem080
Abstract: The purpose of this study was to investigate the efficacy of four different Japanese and Chinese herbal prescriptions, Ren-Shen-Yang-Rong-Tang (Ninjin’yoeito, NYT), Chai-Hu-Gui-Zhi-Gan-Jiang-Tang (Saikokeishikankyoto, SKKT), Si-Jun-Zi-Tang (Shikunshito, SKT) and Si-Wu-Tang (Shimotsuto, SMT), which are traditionally used for anemia and fatigue, against hematotoxicity in mice treated with 5-fluorouracil (5-FU). NYT 1–100 mg kg–1 day–1 injected orally for 7 consecutive days before and after 5-FU injection significantly suppressed reductions in red blood cell, white blood cell and platelet counts in peripheral blood, and accelerated their recovery. Administration of SKKT also produced a slight but significant improvement in 5-FU-induced erythrocytopenia, whereas SMT and SKT could not prevent anemia. Oral injection of NYT also inhibited 5-FU-induced decreases in peripheral reticulocyte and bone marrow cell counts on day 10, and markedly hastened their recovery on day 20, in a dose-dependent manner. Erythroid progenitor colonies, such as colony forming units-erythroid and burst forming units-erythroid, formed by marrow cells from mice treated with 5-FU were significantly increased by oral administration of NYT. These findings suggest that NYT has the potential to protect against hematotoxicity, and also has hematopoietic activity, through stimulation of immature erythroid progenitor cell differentiation.
Page 1 /149742
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.