oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 165 )

2018 ( 248 )

2017 ( 270 )

2016 ( 350 )

Custom range...

Search Results: 1 - 10 of 189822 matches for " G. Manuzio "
All listed articles are free for downloading (OA Articles)
Page 1 /189822
Display every page Item
Evidence For The Production Of Slow Antiprotonic Hydrogen In Vacuum
N. Zurlo,M. Amoretti,C. Amsler,G. Bonomi,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,A. Fontana,R. Funakoshi,P. Genova,R. S. Hayano,L. V. Jorgensen,A. Kellerbauer,V. Lagomarsino,R. Landua,E. Lodi Rizzini,M. Macrì,N. Madsen,G. Manuzio,D. Mitchard,P. Montagna,L. G. Posada,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,D. P. Van der Werf,A. Variola,L. Venturelli,Y. Yamazaki
Physics , 2007, DOI: 10.1103/PhysRevLett.97.153401
Abstract: We present evidence showing how antiprotonic hydrogen, the quasistable antiproton-proton (pbar-p) bound system, has been synthesized following the interaction of antiprotons with the hydrogen molecular ion (H2+) in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events, evidence is presented for antiprotonic hydrogen production with sub-eV kinetic energies in states around n=70, and with low angular momenta. The slow antiprotonic hydrogen may be studied using laser spectroscopic techniques.
Production of Slow Protonium in Vacuum
N. Zurlo,M. Amoretti,C. Amsler,G. Bonomi,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,A. Fontana,R. Funakoshi,P. Genova,R. S. Hayano,L. V. Jorgensen,A. Kellerbauer,V. Lagomarsino,R. Landua,E. Lodi Rizzini,M. Macri',N. Madsen,G. Manuzio,D. Mitchard,P. Montagna,L. G. Posada,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,D. P. Van der Werf,A. Variola,L. Venturelli,Y. Yamazaki
Physics , 2008, DOI: 10.1007/s10751-007-9529-0
Abstract: We describe how protonium, the quasi-stable antiproton-proton bound system, has been synthesized following the interaction of antiprotons with the molecular ion H$_2^+$ in a nested Penning trap environment. From a careful analysis of the spatial distributions of antiproton annihilation events in the ATHENA experiment, evidence is presented for protonium production with sub-eV kinetic energies in states around $n$ = 70, with low angular momenta. This work provides a new 2-body system for study using laser spectroscopic techniques.
Positron plasma diagnostics and temperature control for antihydrogen production
ATHENA Collaboration,M. Amoretti,C. Amsler,G. Bonomi,A. Bouchta,P. D. Bowe,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,V. Filippini,A. Fontana,M. C. Fujiwara,R. Funakoshi,P. Genova,J. S. Hangst,R. S. Hayano,L. V. Jorgensen,V. Lagomarsino,R. Landua,D. Lindelof,E. Lodi Rizzini,M. Macri',N. Madsen,G. Manuzio,P. Montagna,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,A. Variola,D. P. van der Werf
Physics , 2003, DOI: 10.1103/PhysRevLett.91.055001
Abstract: Production of antihydrogen atoms by mixing antiprotons with a cold, confined, positron plasma depends critically on parameters such as the plasma density and temperature. We discuss non-destructive measurements, based on a novel, real-time analysis of excited, low-order plasma modes, that provide comprehensive characterization of the positron plasma in the ATHENA antihydrogen apparatus. The plasma length, radius, density, and total particle number are obtained. Measurement and control of plasma temperature variations, and the application to antihydrogen production experiments are discussed.
Production of Cold Antihydrogen with ATHENA for Fundamental Studies
ATHENA Collaboration,A. Kellerbauer,M. Amoretti,C. Amsler,G. Bonomi,P. D. Bowe,C. Canali,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,A. Fontana,M. C. Fujiwara,R. Funakoshi,P. Genova,J. S. Hangst,R. S. Hayano,I. Johnson,L. V. J?rgensen,V. Lagomarsino,R. Landua,E. Lodi Rizzini,M. Macrí,N. Madsen,G. Manuzio,D. Mitchard,P. Montagna,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,A. Variola,L. Venturelli,D. P. van der Werf,Y. Yamazaki,N. Zurlo
Physics , 2004,
Abstract: Since the beginning of operations of the CERN Antiproton Decelerator in July 2000, the successful deceleration, storage and manipulation of antiprotons has led to remarkable progress in the production of antimatter. The ATHENA Collaboration were the first to create and detect cold antihydrogen in 2002, and we can today produce large enough amounts of antiatoms to study their properties as well as the parameters that govern their production rate.
ATHENA -- First Production of Cold Antihydrogen and Beyond
ATHENA Collaboration,A. Kellerbauer,M. Amoretti,C. Amsler,G. Bonomi,P. D. Bowe,C. Canali,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,A. Fontana,M. C. Fujiwara,R. Funakoshi,P. Genova,J. S. Hangst,R. S. Hayano,I. Johnson,L. V. J?rgensen,V. Lagomarsino,R. Landua,E. Lodi Rizzini,M. Macrí,N. Madsen,G. Manuzio,D. Mitchard,P. Montagna,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,A. Variola,L. Venturelli,D. P. van der Werf,Y. Yamazaki,N. Zurlo
Physics , 2004,
Abstract: Atomic systems of antiparticles are the laboratories of choice for tests of CPT symmetry with antimatter. The ATHENA experiment was the first to report the production of copious amounts of cold antihydrogen in 2002. This article reviews some of the insights that have since been gained concerning the antihydrogen production process as well as the external and internal properties of the produced anti-atoms. Furthermore, the implications of those results on future prospects of symmetry tests with antimatter are discussed.
Cold-Antimatter Physics
ATHENA Collaboration,M. Amoretti,C. Amsler,G. Bonomi,P. D. Bowe,C. Canali,C. Carraro,C. L. Cesar,M. Charlton,M. Doser,A. Fontana,M. C. Fujiwara,R. Funakoshi,P. Genova,J. S. Hangst,R. S. Hayano,I. Johnson,L. V. Jorgensen,A. Kellerbauer,V. Lagomarsino,R. Landua,E. Lodi Rizzini,M. Macri,N. Madsen,G. Manuzio,D. Mitchard,P. Montagna,H. Pruys,C. Regenfus,A. Rotondi,G. Testera,A. Variola,L. Venturelli,D. P. van der Werf,Y. Yamazaki,N. Zurlo
Physics , 2005,
Abstract: The CPT theorem and the Weak Equivalence Principle are foundational principles on which the standard description of the fundamental interactions is based. The validity of such basic principles should be tested using the largest possible sample of physical systems. Cold neutral antimatter (low-energy antihydrogen atoms) could be a tool for testing the CPT symmetry with high precision and for a direct measurement of the gravitational acceleration of antimatter. After several years of experimental efforts, the production of low-energy antihydrogen through the recombination of antiprotons and positrons is a well-established experimental reality. An overview of the ATHENA experiment at CERN will be given and the main experimental results on antihydrogen formation will be reviewed.
Formation Of A Cold Antihydrogen Beam in AEGIS For Gravity Measurements
G. Testera,A. S. Belov,G. Bonomi,I. Boscolo,N. Brambilla,R. S. Brusa,V. M. Byakov,L. Cabaret,C. Canali,C. Carraro,F. Castelli,S. Cialdi,M. de Combarieu,D. Comparat,G. Consolati,N. Djourelov,M. Doser,G. Drobychev,A. Dupasquier,D. Fabris,R. Ferragut,G. Ferrari,A. Fischer,A. Fontana,P. Forget,L. Formaro,M. Lunardon,A. Gervasini,M. G. Giammarchi,S. N. Gninenko,G. Gribakin,R. Heyne,S. D. Hogan,A. Kellerbauer,D. Krasnicky,V. Lagomarsino,G. Manuzio,S. Mariazzi,V. A. Matveev,F. Merkt,S. Moretto,C. Morhard,G. Nebbia,P. Nedelec,M. K. Oberthaler,P. Pari,V. Petracek,M. Prevedelli,I. Y. Al-Qaradawi,F. Quasso,O. Rohne,S. Pesente,A. Rotondi,S. Stapnes,D. Sillou,S. V. Stepanov,H. H. Stroke,G. Tino,A. Vairo,G. Viesti,H. Walters,U. Warring,S. Zavatarelli,A. Zenoni,D. S. Zvezhinskij,for the AEGIS Proto-Collaboration
Physics , 2008, DOI: 10.1063/1.2977857
Abstract: The formation of the antihydrogen beam in the AEGIS experiment through the use of inhomogeneous electric fields is discussed and simulation results including the geometry of the apparatus and realistic hypothesis about the antihydrogen initial conditions are shown. The resulting velocity distribution matches the requirements of the gravity experiment. In particular it is shown that the inhomogeneous electric fields provide radial cooling of the beam during the acceleration.
Measurement of geo-neutrinos from 1353 days of Borexino
G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,G. Fiorentini,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. V. Kobychev,D. Korablev,G. Korga,Y. Koshio,D. Kryn,M. Laubenstein,T. Lewke,E. Litvinovich,B. Loer,P. Lombardi,F. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,N. Rossi,A. Sabelnikov,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Physics , 2013, DOI: 10.1016/j.physletb.2013.04.030
Abstract: We present a measurement of the geo--neutrino signal obtained from 1353 days of data with the Borexino detector at Laboratori Nazionali del Gran Sasso in Italy. With a fiducial exposure of (3.69 $\pm$ 0.16) $\times$ $10^{31}$ proton $\times$ year after all selection cuts and background subtraction, we detected (14.3 $\pm$ 4.4) geo-neutrino events assuming a fixed chondritic mass Th/U ratio of 3.9. This corresponds to a geo-neutrino signal $S_{geo}$ = (38.8 $\pm$ 12.0) TNU with just a 6 $\times$ $10^{-6}$ probability for a null geo-neutrino measurement. With U and Th left as free parameters in the fit, the relative signals are $S_{\mathrm{Th}}$ = (10.6 $\pm$ 12.7) TNU and $S_\mathrm{U}$ = (26.5 $\pm$ 19.5) TNU. Borexino data alone are compatible with a mantle geo--neutrino signal of (15.4 $\pm$ 12.3) TNU, while a combined analysis with the KamLAND data allows to extract a mantle signal of (14.1 $\pm$ 8.1) TNU. Our measurement of a reactor anti--neutrino signal $S_{react}$ = 84.5$^{+19.3}_{-18.9}$ TNU is in agreement with expectations in the presence of neutrino oscillations.
Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth
G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. G?ger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,T. Lewke,E. Litvinovich,B. Loer,P. Lombardi,F. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,R. M?llenberg,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Sch?nert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Physics , 2013, DOI: 10.1088/1475-7516/2013/08/049
Abstract: The solar neutrino experiment Borexino, which is located in the Gran Sasso underground laboratories, is in a unique position to study muon-induced backgrounds in an organic liquid scintillator. In this study, a large sample of cosmic muons is identified and tracked by a muon veto detector external to the liquid scintillator, and by the specific light patterns observed when muons cross the scintillator volume. The yield of muon-induced neutrons is found to be Yn =(3.10+-0.11)10-4 n/({\mu} (g/cm2)). The distance profile between the parent muon track and the neutron capture point has the average value {\lambda} = (81.5 +- 2.7)cm. Additionally the yields of a number of cosmogenic radioisotopes are measured for 12N, 12B, 8He, 9C, 9Li, 8B, 6He, 8Li, 11Be, 10C and 11C. All results are compared with Monte Carlo simulation predictions using the Fluka and Geant4 packages. General agreement between data and simulation is observed for the cosmogenic production yields with a few exceptions, the most prominent case being 11C yield for which both codes return about 50% lower values. The predicted {\mu}-n distance profile and the neutron multiplicity distribution are found to be overall consistent with data.
Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS
Borexino Collaboration,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,C. Carraro,P. Cavalcante,A. Chavarria,A. Chepurnov,V. Chubakov,D. D'Angelo,S. Davini,A. Derbin,A. Etenko,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. G?ger-Neff,A. Goretti,L. Grandi,E. Guardincerri,S. Hardy,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,Y. Koshio,D. Kryn,M. Laubenstein,T. Lewke,Marcello Lissia,E. Litvinovich,B. Loer,F. Lombardi,P. Lombardi,L. Ludhova,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,D. Montanari,P. Mosteiro,F. Mantovani,V. Muratova,S. Nisi,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,A. Sabelnikov,R. Saldanha,C. Salvo,S. Sch?nert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,R. B. Vogelaar,F. von Feilitzsch,J. Winter,M. Wojcik,A. Wright,M. Wurm,G. Xhixha,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Statistics , 2012,
Abstract: We have studied the alpha decays of 214Po into 210Pb and of 212Po into 208Pb tagged by the coincidence with the preceding beta decays from 214Bi and 212Bi, respectively. The employed 222Rn, 232Th, and 220Rn sources were sealed inside quartz vials and inserted in the Counting Test Facility at the underground Gran Sasso National Laboratory in Italy. We find that the mean lifetime of 214Po is (236.00 +- 0.42(stat) +- 0.15(syst)) \mu s and that of 212Po is (425.1 +- 0.9(stat) +- 1.2(syst)) ns. Our results, obtained from data with signal-to-background ratio larger than 1000, reduce the overall uncertainties and are compatible with previous measurements.
Page 1 /189822
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.