oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 5 )

2019 ( 140 )

2018 ( 189 )

2017 ( 210 )

Custom range...

Search Results: 1 - 10 of 144453 matches for " F. Dentener "
All listed articles are free for downloading (OA Articles)
Page 1 /144453
Display every page Item
Influence of future air pollution mitigation strategies on total aerosol radiative forcing
S. Kloster,F. Dentener,J. Feichter,F. Raes
Atmospheric Chemistry and Physics Discussions , 2008,
Abstract: We apply different aerosol and aerosol precursor emission scenarios reflecting possible future control strategies for air pollution in the ECHAM5-HAM model, and simulate the resulting effect on the Earth's radiation budget. We use two opposing future mitigation strategies for the year 2030: one in which emission reduction legislation decided in countries throughout the world are effectively implemented (current legislation; CLE 2030) and one in which all technical options for emission reductions are being implemented independent of their cost (maximum feasible reduction; MFR 2030). We consider the direct, semi-direct and indirect radiative effects of aerosols. The total anthropogenic aerosol radiative forcing defined as the difference in the top-of-the-atmosphere radiation between 2000 and pre-industrial times amounts to 2.05 W/m2. In the future this negative global annual mean aerosol radiative forcing will only slightly change (+0.02 W/m2) under the "current legislation" scenario. Regionally, the effects are much larger: e.g. over Eastern Europe radiative forcing would increase by +1.50 W/m2 because of successful aerosol reduction policies, whereas over South Asia it would decrease by 1.10 W/m2 because of further growth of emissions. A "maximum feasible reduction" of aerosols and their precursors would lead to an increase of the global annual mean aerosol radiative forcing by +1.13 W/m2. Hence, in the latter case, the present day negative anthropogenic aerosol forcing cloud be more than halved by 2030 because of aerosol reduction policies and climate change thereafter will be to a larger extend be controlled by greenhouse gas emissions. We combined these two opposing future mitigation strategies for a number of experiments focusing on different sectors and regions. In addition, we performed sensitivity studies to estimate the importance of future changes in oxidant concentrations and the importance of the aerosol microphysical coupling within the range of expected future changes. For changes in oxidant concentrations in the future within a realistic range, we do not find a significant effect for the global annual mean radiative aerosol forcing. In the extreme case of only abating SO2 or carbonaceous emissions to a maximum feasible extent, we find deviations from additivity for the radiative forcing over anthropogenic source regions up to 10% compared to an experiment abating both at the same time.
What can we learn about ship emission inventories from measurements of air pollutants over the Mediterranean Sea?
E. Marmer,F. Dentener,J. v. Aardenne,F. Cavalli
Atmospheric Chemistry and Physics Discussions , 2009,
Abstract: Ship emission estimates diverge widely for all chemical compounds for several reasons: use of different methodologies (bottom-up or top-down), activity data and emission factors can easily result in a difference from a factor of 1.5 to two orders of magnitude. Despite these large discrepancies in existing ship emission inventories for air pollutants very little has been done to evaluate their consistency with atmospheric measurements at open sea. Combining three sets of observational data – ozone and black carbon measurements sampled at three coastal sites and on board of a Mediterranean cruise ship, as well as satellite observations of atmospheric NO2 column concentration over the same area – we assess the accuracy of the three most commonly used ship emission inventories, EDGAR FT (Olivier et al., 2005), emissions described by Eyring et al. (2005) and emissions reported by EMEP (Vestreng et al., 2007). Our tool is a global atmospheric chemistry transport model which simulates the chemical state of the Mediterranean atmosphere applying different ship emission inventories. The simulated contributions of ships to air pollutant levels in the Mediterranean atmosphere are significant but strongly depend on the inventory applied. Close to the major shipping routes relative contributions vary from 10 to 50% for black carbon and from 2 to 12% for ozone in the surface layer, as well as from 5 to 20% for nitrogen dioxide atmospheric column burden. The relative contributions are still significant over the North African coast, but less so over the South European coast. The observations poorly constrain the ship emission inventories in the Eastern Mediterranean where the influence of uncertain land based emissions, the model transport and wet deposition are at least as important as the signal from ships. In the Western Mediterranean, the regional EMEP emission inventory gives the best match with most measurements, followed by Eyring for NO2 and ozone and by EDGAR for black carbon. Given the uncertainty of the measurements and the model, each of the three emission inventories could actually be right, implying that large uncertainties in ship emissions need to be considered for future scenario analysis.
Formation of secondary organic aerosol from isoprene oxidation over Europe
M. Karl, K. Tsigaridis, E. Vignati,F. Dentener
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2009,
Abstract: The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr 1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of organic matter (OM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates OM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr 1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms reduces the tropospheric production of isoprene derived SOA over Europe from 0.4 Tg yr 1 in our reference simulation to 0.1 Tg yr 1.
On the role of hydroxyl radicals in the self-cleansing capacity of the troposphere
J. Lelieveld, F. J. Dentener, W. Peters,M. C. Krol
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2004,
Abstract: Thousands of megatons natural and anthropogenic gases are released and subsequently removed from the troposphere each year. Photochemical reactions, initiated by hydroxyl (OH) radicals, oxidise most gases to products which are more easily removed by precipitation and dry deposition at the earth's surface. Since human-induced pollution emissions strongly affect OH formation and loss, large global changes in OH concentrations are possible. Global models and observations of trace gas distributions from global networks have been used to study geographical and temporal changes in tropospheric OH. Here we present a synopsis of recent studies, indicating that global mean OH has changed remarkably little in the past century, even though regional changes have probably been substantial. Globally, depletion of OH by reactive carbon gases has been compensated by increased OH formation by nitrogen oxides, an act of "inadvertent geo-engineering". However, OH analyses for the past 1-2 decades, partly based on methyl chloroform measurements, are inconclusive. Some work, assuming that methyl chloroform emissions have largely ceased, suggests a very strong downward global OH trend in the 1990s, inconsistent with modelling studies. The discrepancy could be much reduced by assuming continued small emissions of methyl chloroform. We recommend the continuation of high precision monitoring of this compound and improved analyses based on detailed meteorological-chemical models.
Formation of secondary organic aerosol from isoprene oxidation over Europe
M. Karl,K. Tsigaridis,E. Vignati,F. Dentener
Atmospheric Chemistry and Physics Discussions , 2009,
Abstract: The role of isoprene as a precursor to secondary organic aerosol (SOA) over Europe is studied with the two-way nested global chemistry transport model TM5. The inclusion of the formation of SOA from isoprene oxidation in our model almost doubles the atmospheric burden of SOA over Europe compared to SOA formation from terpenes and aromatics. The reference simulation, which considers SOA formation from isoprene, terpenes and aromatics, predicts a yearly European production rate of 1.0 Tg SOA yr 1 and an annual averaged atmospheric burden of about 50 Gg SOA over Europe. A fraction of 35% of the SOA produced in the boundary layer over Europe is transported to higher altitudes or to other world regions. Summertime measurements of particulate organic matter (POM) during the extensive EMEP OC/EC campaign 2002/2003 are better reproduced when SOA formation from isoprene is taken into account, reflecting also the strong seasonality of isoprene and other biogenic volatile organic compounds (BVOC) emissions from vegetation. However, during winter, our model strongly underestimates POM, likely caused by missing wood burning in the emission inventories. Uncertainties in the parameterisation of isoprene SOA formation have been investigated. Maximum SOA production is found for irreversible sticking (non-equilibrium partitioning) of condensable vapours on particles, with tropospheric SOA production over Europe increased by a factor of 4 in summer compared to the reference case. Completely neglecting SOA formation from isoprene results in the lowest estimate (0.51 Tg SOA yr 1). The amount and the nature of the absorbing matter are shown to be another key uncertainty when predicting SOA levels. Tropospheric isoprene SOA production over Europe in summer more than doubles when, in addition to pre-existing carbonaceous aerosols, condensation of semi volatile vapours on ammonium and sulphate aerosols is considered. Consequently, smog chamber experiments on SOA formation should be performed with different types of seed aerosols and without seed aerosols in order to derive an improved treatment of the absorption of SOA in the models. Consideration of a number of recent insights in isoprene SOA formation mechanisms reduces the tropospheric production of isoprene derived SOA over Europe from 0.4 Tg yr 1 in our reference simulation to 0.1 Tg yr 1.
The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990–2030
F. Dentener,D. Stevenson,J. Cofala,R. Mechler
Atmospheric Chemistry and Physics Discussions , 2004,
Abstract: To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000). With the TM3 and STOCHEM models we performed several long-term integrations (1990–2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce realistically the observed trends in background ozone, CO, and CH4 concentrations from 1990 to 2002. For the "current legislation" case, both models indicate an increase of the annual average ozone levels in the Northern hemisphere by 5 ppbv, and up to 15 ppbv over the Indian sub-continent, comparing the 2020s with the 1990s. The corresponding higher ozone and methane burdens in the atmosphere increase radiative forcing by approximately 0.2 Wm 2. Full application of today's emissions control technologies, however, would bring down ozone below the levels experienced in the 1990s and would reduce the current radiative forcing of ozone and methane by approximately 0.1Wm 2. While methane reductions lead to lower ozone burdens and to less radiative forcing, further reductions of the air pollutants NO4 and NMVOC result in lower ozone, but at the same time increase the lifetime of met
A multi-model assessment of pollution transport to the Arctic
D. T. Shindell,H. Teich,M. Chin,F. Dentener
Atmospheric Chemistry and Physics Discussions , 2008,
Abstract: We examine the response of Arctic gas and aerosol concentrations to perturbations in pollutant emissions from Europe, East and South Asia, and North America using results from a coordinated model intercomparison. These sensitivities to regional emissions (mixing ratio change per unit emission) vary widely across models and species. Intermodel differences are systematic, however, so that the relative importance of different regions is robust. North America contributes the most to Arctic ozone pollution. For aerosols and CO, European emissions dominate at the Arctic surface but Asian emissions become progressively more important with altitude, and are dominant in the upper troposphere. Sensitivities show strong seasonality: surface sensitivities typically maximize during boreal winter for European and during spring for East Asian and North American emissions. Mid-tropospheric sensitivities, however, nearly always maximize during spring or summer for all regions. Deposition of black carbon (BC) onto Greenland is most sensitive to North American emissions. North America and Europe each contribute ~40% of total BC deposition to Greenland, with ~20% from East Asia. Elsewhere in the Arctic, both sensitivity and total BC deposition are dominated by European emissions. Model diversity for aerosols is especially large, resulting primarily from differences in aerosol physics and removal. Comparison of aerosols with observations indicates problems in either the models or interpretation of the measurements. For gas phase pollutants such as CO and O3, which are relatively well-simulated, the processes contributing most to uncertainties depend on the source region. Uncertainties in the Arctic surface CO response to emissions perturbations are dominated by emissions for East Asian sources, while uncertainties in transport, emissions, and oxidation are comparable for European and North American sources. At higher levels, model-to-model variations in transport and oxidation are most important. Differences in photochemistry appear to play the largest role in the intermodel variations in Arctic ozone sensitivity.
Trends and inter-annual variability of methane emissions derived from 1979-1993 global CTM simulations
F. Dentener,M. van Weele,M. Krol,S. Houweling
Atmospheric Chemistry and Physics Discussions , 2002,
Abstract: The trend and interannual variability of methane sources are derived from multi-annual simulations of tropospheric photochemistry using a 3D global chemistry-transport model. Our semi-inverse analysis uses the fifteen years (1979 -1993) re-analysis of ECMWF meteorological data and annually varying including photo-chemistry, in conjunction with observed CH4 concentration distributions and trends derived from the NOAA-CMDL surface stations. Dividing the world in four zonal regions, (45-90 N, 0-45 N, 0-45 S; 45-90 S) we find good agreement in each region between (top-down) calculated emission trends from model simulations and (bottom-up) estimated anthropogenic emission trends based on the EDGAR global anthropogenic emission database, which amounts for the period 1979 -1993 2.7 Tg CH4 yr -1. Also the top-down determined total global methane emission compares well with the total of the bottom-up estimates. We use the difference between the bottom-up and top-down determined emission trends to calculate residual emissions. These residual emissions represent the inter-annual variability of the methane emissions. Simulations have been performed in which the year-to-year meteorology, the emissions of ozone precursor gases, and the stratospheric ozone column distribution are either varied, or kept constant. The analyses reveals that the variability of the emissions is of the order of 8 Tg CH4 yr -1, and most likely related to mid- and low-latitude wetland emissions and/or biomass burning. Indeed, a weak correlation is found between the residual emissions and regional scale temperatures.
Chemistry-transport modeling of the satellite observed distribution of tropical tropospheric ozone
W. Peters,M. Krol,F. Dentener,A. Thompson
Atmospheric Chemistry and Physics Discussions , 2001,
Abstract: We have compared the 14-year record of satellite derived tropical tropospheric ozone columns (TTOC) from the NIMBUS-7 Total Ozone Mapping Spectrometer (TOMS) to TTOC calculated by a chemistry-transport model (CTM). An objective measure of error, based on the zonal distribution of TTOC in the tropics, is applied to perform this comparison systematically. In addition, the sensitivity of the model to several key processes in the tropics is quantified to select directions for future improvements. The comparison indicates a widespread, systematic (~20%) underestimate of TTOC over the tropical Atlantic Ocean, which maximizes during austral spring. This 'Atlantic mismatch' is largely due to a misrepresentation of seasonally recurring processes in the model, while minor differences between model and observations over the tropical Pacific Ocean are mostly due to uncaptured interannual variability. Although chemical processes determine the TTOC extent, dynamical processes dominate the TTOC distribution, as the use of actual meteorology pertaining to the year of observations always leads to a better agreement with TTOC observations than using a random year or a climatology. The modeled TTOC is remarkably insensitive to many model parameters due to efficient feedbacks in the ozone budget. Nevertheless, the simulations would profit from an improved biomass burning calendar, as well as from an increase in NOx abundances in free tropospheric biomass burning plumes. The use of multi-year satellite derived tropospheric data to systematically test and improve a CTM is a promising new addition to existing methods of model validation, and is a first step to integrate tropospheric satellite observations into global ozone modeling studies.
Inverse modelling of national and European CH4 emissions using the atmospheric zoom model TM5
P. Bergamaschi,M. Krol,F. Dentener,A. Vermeulen
Atmospheric Chemistry and Physics Discussions , 2005,
Abstract: A synthesis inversion based on the atmospheric zoom model TM5 is used to derive top-down estimates of CH4 emissions from individual European countries for the year 2001. We employ a model zoom over Europe with 1°×1° resolution that is two-way nested into the global model domain (with resolution of 6°×4°). This approach ensures consistent boundary conditions for the zoom domain and thus European top-down estimates consistent with global CH4 observations. The TM5 model, driven by ECMWF analyses, simulates synoptic scale events at most European and global sites fairly well, and the use of high-frequency observations allows exploiting the information content of individual synoptic events. A detailed source attribution is presented for a comprehensive set of 56 monitoring sites, assigning the atmospheric signal to the emissions of individual European countries and larger global regions. The available observational data put significant constraints on emissions from different regions. Within Europe, in particular several Western European countries are well constrained. The inversion results suggest up to 50–90% higher anthropogenic CH4 emissions in 2001 for Germany, France and UK compared to reported UNFCCC values, but the derived EU-15 totals are relatively close to UNFCCC values (within 10–30%). The derived top-down estimate for Finland is distinctly smaller than the a priori estimate, suggesting much smaller CH4 emissions from Finnish wetlands than derived from the bottom-up inventory.
Page 1 /144453
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.