oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 135 )

2019 ( 741 )

2018 ( 829 )

2017 ( 772 )

Custom range...

Search Results: 1 - 10 of 470569 matches for " Elizabeth A. Rach equal contributor "
All listed articles are free for downloading (OA Articles)
Page 1 /470569
Display every page Item
Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level
Elizabeth A. Rach equal contributor,Deborah R. Winter equal contributor,Ashlee M. Benjamin,David L. Corcoran,Ting Ni,Jun Zhu,Uwe Ohler
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1001274
Abstract: The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.
Genetic Response to Climatic Change: Insights from Ancient DNA and Phylochronology
Elizabeth A Hadly ,Uma Ramakrishnan equal contributor,Yvonne L Chan equal contributor,Marcel van Tuinen equal contributor,Kim O'Keefe,Paula A Spaeth,Chris J Conroy
PLOS Biology , 2004, DOI: 10.1371/journal.pbio.0020290
Abstract: Understanding how climatic change impacts biological diversity is critical to conservation. Yet despite demonstrated effects of climatic perturbation on geographic ranges and population persistence, surprisingly little is known of the genetic response of species. Even less is known over ecologically long time scales pertinent to understanding the interplay between microevolution and environmental change. Here, we present a study of population variation by directly tracking genetic change and population size in two geographically widespread mammal species (Microtus montanus and Thomomys talpoides) during late-Holocene climatic change. We use ancient DNA to compare two independent estimates of population size (ecological and genetic) and corroborate our results with gene diversity and serial coalescent simulations. Our data and analyses indicate that, with population size decreasing at times of climatic change, some species will exhibit declining gene diversity as expected from simple population genetic models, whereas others will not. While our results could be consistent with selection, independent lines of evidence implicate differences in gene flow, which depends on the life history strategy of species.
Variation, Sex, and Social Cooperation: Molecular Population Genetics of the Social Amoeba Dictyostelium discoideum
Jonathan M. Flowers equal contributor,Si I. Li equal contributor,Angela Stathos equal contributor,Gerda Saxer,Elizabeth A. Ostrowski,David C. Queller,Joan E. Strassmann,Michael D. Purugganan
PLOS Genetics , 2010, DOI: 10.1371/journal.pgen.1001013
Abstract: Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell–cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown. We re-sequenced 137 gene fragments in wild North American strains of D. discoideum and examined the levels and patterns of nucleotide variation in this social microbial species. We observe surprisingly low levels of nucleotide variation in D. discoideum across these strains, with a mean nucleotide diversity (π) of 0.08%, and no strong population stratification among North American strains. We also do not find any clear relationship between nucleotide divergence between strains and levels of social dominance and kin discrimination. Kin discrimination experiments, however, show that strains collected from the same location show greater ability to distinguish self from non-self than do strains from different geographic areas. This suggests that a greater ability to recognize self versus non-self may arise among strains that are more likely to encounter each other in nature, which would lead to preferential formation of fruiting bodies with clonemates and may prevent the evolution of cheating behaviors within D. discoideum populations. Finally, despite the fact that sex has rarely been observed in this species, we document a rapid decay of linkage disequilibrium between SNPs, the presence of recombinant genotypes among natural strains, and high estimates of the population recombination parameter ρ. The SNP data indicate that recombination is widespread within D. discoideum and that sex as a form of social interaction is likely to be an important aspect of the life cycle.
Transcriptional Control in Cardiac Progenitors: Tbx1 Interacts with the BAF Chromatin Remodeling Complex and Regulates Wnt5a
Li Chen equal contributor,Filomena Gabriella Fulcoli equal contributor,Rosa Ferrentino,Stefania Martucciello,Elizabeth A. Illingworth,Antonio Baldini
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002571
Abstract: Mutations of the Wnt5a gene, encoding a ligand of the non-canonical Wnt pathway, and the Ror2 gene, encoding its receptor, have been found in patients with cardiac outflow tract defects. We found that Wnt5a is expressed in the second heart field (SHF), a population of cardiac progenitor cells destined to populate the cardiac outflow tract and the right ventricle. Because of cardiac phenotype similarities between Wnt5a and Tbx1 mutant mice, we tested potential interactions between the two genes. We found a strong genetic interaction in vivo and determined that the loss of both genes caused severe hypoplasia of SHF–dependent segments of the heart. We demonstrated that Wnt5a is a transcriptional target of Tbx1 and explored the mechanisms of gene regulation. Tbx1 occupies T-box binding elements within the Wnt5a gene and interacts with the Baf60a/Smarcd1 subunit of a chromatin remodeling complex. It also interacts with the Setd7 histone H3K4 monomethyltransferase. Tbx1 enhances Baf60a occupation at the Wnt5a gene and enhances its H3K4 monomethylation status. Finally, we show that Baf60a is required for Tbx1–driven regulation of target genes. These data suggest a model in which Tbx1 interacts with, and probably recruits a specific subunit of, the BAF complex as well as histone methylases to activate or enhance transcription. We speculate that this may be a general mechanism of T-box function and that Baf60a is a key component of the transcriptional control in cardiac progenitors.
[SWI+], the Prion Formed by the Chromatin Remodeling Factor Swi1, Is Highly Sensitive to Alterations in Hsp70 Chaperone System Activity
Justin K. Hines equal contributor,Xiaomo Li equal contributor,Zhiqiang Du,Takashi Higurashi,Liming Li ,Elizabeth A. Craig
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1001309
Abstract: The yeast prion [SWI+], formed of heritable amyloid aggregates of the Swi1 protein, results in a partial loss of function of the SWI/SNF chromatin-remodeling complex, required for the regulation of a diverse set of genes. Our genetic analysis revealed that [SWI+] propagation is highly dependent upon the action of members of the Hsp70 molecular chaperone system, specifically the Hsp70 Ssa, two of its J-protein co-chaperones, Sis1 and Ydj1, and the nucleotide exchange factors of the Hsp110 family (Sse1/2). Notably, while all yeast prions tested thus far require Sis1, [SWI+] is the only one known to require the activity of Ydj1, the most abundant J-protein in yeast. The C-terminal region of Ydj1, which contains the client protein interaction domain, is required for [SWI+] propagation. However, Ydj1 is not unique in this regard, as another, closely related J-protein, Apj1, can substitute for it when expressed at a level approaching that of Ydj1. While dependent upon Ydj1 and Sis1 for propagation, [SWI+] is also highly sensitive to overexpression of both J-proteins. However, this increased prion-loss requires only the highly conserved 70 amino acid J-domain, which serves to stimulate the ATPase activity of Hsp70 and thus to stabilize its interaction with client protein. Overexpression of the J-domain from Sis1, Ydj1, or Apj1 is sufficient to destabilize [SWI+]. In addition, [SWI+] is lost upon overexpression of Sse nucleotide exchange factors, which act to destabilize Hsp70's interaction with client proteins. Given the plethora of genes affected by the activity of the SWI/SNF chromatin-remodeling complex, it is possible that this sensitivity of [SWI+] to the activity of Hsp70 chaperone machinery may serve a regulatory role, keeping this prion in an easily-lost, meta-stable state. Such sensitivity may provide a means to reach an optimal balance of phenotypic diversity within a cell population to better adapt to stressful environments.
Kin Discrimination Increases with Genetic Distance in a Social Amoeba
Elizabeth A Ostrowski equal contributor ,Mariko Katoh equal contributor,Gad Shaulsky,David C Queller,Joan E Strassmann
PLOS Biology , 2008, DOI: 10.1371/journal.pbio.0060287
Abstract: In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different. We tested how widely social amoebae cooperate by mixing isolates from different localities that cover most of their natural range. We show here that different isolates partially exclude one another during aggregation, and there is a positive relationship between the extent of this exclusion and the genetic distance between strains. Our findings demonstrate that D. discoideum cells co-aggregate more with genetically similar than dissimilar individuals, suggesting the existence of a mechanism that discerns the degree of genetic similarity between individuals in this social microorganism.
Correlation between Dengue-Specific Neutralizing Antibodies and Serum Avidity in Primary and Secondary Dengue Virus 3 Natural Infections in Humans
Andreas Puschnik,Louis Lau equal contributor,Elizabeth A. Cromwell equal contributor,Angel Balmaseda,Simona Zompi ? ,Eva Harris ?
PLOS Neglected Tropical Diseases , 2013, DOI: 10.1371/journal.pntd.0002274
Abstract: Although heterotypic secondary infection with dengue virus (DENV) is associated with severe disease, the majority of secondary infections are mild or asymptomatic. The mechanisms of antibody-mediated protection are poorly understood. In 2010, 108 DENV3-positive cases were enrolled in a pediatric hospital-based study in Managua, Nicaragua, with 61 primary and 47 secondary infections. We analyzed DENV-specific neutralization titers (NT50), IgM and IgG avidity, and antibody titer in serum samples collected during acute and convalescent phases and 3, 6, and 18 months post-infection. NT50 titers peaked at convalescence and decreased thereafter. IgG avidity to DENV3 significantly increased between convalescent and 3-month time-points in primary DENV infections and between the acute and convalescent phase in secondary DENV infections. While avidity to DENV2, a likely previous infecting serotype, was initially higher than avidity to DENV3 in secondary DENV infections, the opposite relation was observed 3–18 months post-infection. We found significant correlations between IgM avidity and NT50 in acute primary cases and between IgG avidity and NT50 in secondary DENV infections. In summary, our findings indicate that IgM antibodies likely play a role in early control of DENV infections. IgG serum avidity to DENV, analyzed for the first time in longitudinal samples, switches from targeting mainly cross-reactive serotype(s) to the current infecting serotype over time. Finally, serum avidity correlates with neutralization capacity.
TcTASV: A Novel Protein Family in Trypanosoma cruzi Identified from a Subtractive Trypomastigote cDNA Library
Elizabeth A. García equal contributor,María Ziliani equal contributor,Fernán Agüero,Guillermo Bernabó,Daniel O. Sánchez,Valeria Tekiel
PLOS Neglected Tropical Diseases , 2010, DOI: 10.1371/journal.pntd.0000841
Abstract: Background The identification and characterization of antigens expressed in Trypanosoma cruzi stages that parasitize mammals are essential steps for the development of new vaccines and diagnostics. Genes that are preferentially expressed in trypomastigotes may be involved in key processes that define the biology of trypomastigotes, like cell invasion and immune system evasion. Methodology/Principal Findings With the initial aim of identifying trypomastigote-specific expressed tags, we constructed and sequenced an epimastigote-subtracted trypomastigote cDNA library (library TcT-E). More than 45% of the sequenced clones of the library could not be mapped to previously annotated mRNAs or proteins. We validated the presence of these transcripts by reverse northern blot and northern blot experiments, therefore providing novel information about the mRNA expression of these genes in trypomastigotes. A 280-bp consensus element (TcT-E element, TcT-Eelem) located at the 3′ untranslated region (3′ UTR) of many different open reading frames (ORFs) was identified after clustering the TcT-E dataset. Using an RT-PCR approach, we were able to amplify different mature mRNAs containing the same TcT-Eelem in the 3′ UTR. The proteins encoded by these ORFs are members of a novel surface protein family in T. cruzi, (which we named TcTASV for T. cruzi Trypomastigote, Alanine, Serine and Valine rich proteins). All members of the TcTASV family have conserved coding amino- and carboxy-termini, and a central variable core that allows partitioning of TcTASV proteins into three subfamilies. Analysis of the T. cruzi genome database resulted in the identification of 38 genes/ORFs for the whole TcTASV family in the reference CL-Brener strain (lineage II). Because this protein family was not found in other trypanosomatids, we also looked for the presence of TcTASV genes in other evolutionary lineages of T. cruzi, sequencing 48 and 28 TcTASVs members from the RA (lineage II) and Dm28 (lineage I) T. cruzi strains respectively. Detailed phylogenetic analyses of TcTASV gene products show that this gene family is different from previously characterized mucin (TcMUCII), mucin-like, and MASP protein families. Conclusions/Significance We identified TcTASV, a new gene family of surface proteins in T. cruzi.
Activation of Estrogen-Responsive Genes Does Not Require Their Nuclear Co-Localization
Silvia Kocanova equal contributor,Elizabeth A. Kerr equal contributor,Sehrish Rafique,Shelagh Boyle,Elad Katz,Stephanie Caze-Subra,Wendy A. Bickmore ,Kerstin Bystricky
PLOS Genetics , 2010, DOI: 10.1371/journal.pgen.1000922
Abstract: The spatial organization of the genome in the nucleus plays a role in the regulation of gene expression. Whether co-regulated genes are subject to coordinated repositioning to a shared nuclear space is a matter of considerable interest and debate. We investigated the nuclear organization of estrogen receptor alpha (ERα) target genes in human breast epithelial and cancer cell lines, before and after transcriptional activation induced with estradiol. We find that, contrary to another report, the ERα target genes TFF1 and GREB1 are distributed in the nucleoplasm with no particular relationship to each other. The nuclear separation between these genes, as well as between the ERα target genes PGR and CTSD, was unchanged by hormone addition and transcriptional activation with no evidence for co-localization between alleles. Similarly, while the volume occupied by the chromosomes increased, the relative nuclear position of the respective chromosome territories was unaffected by hormone addition. Our results demonstrate that estradiol-induced ERα target genes are not required to co-localize in the nucleus.
Calpains Mediate Integrin Attachment Complex Maintenance of Adult Muscle in Caenorhabditis elegans
Timothy Etheridge equal contributor,Elizabeth A. Oczypok equal contributor,Susann Lehmann,Brandon D. Fields,Freya Shephard,Lewis A. Jacobson,Nathaniel J. Szewczyk
PLOS Genetics , 2012, DOI: 10.1371/journal.pgen.1002471
Abstract: Two components of integrin containing attachment complexes, UNC-97/PINCH and UNC-112/MIG-2/Kindlin-2, were recently identified as negative regulators of muscle protein degradation and as having decreased mRNA levels in response to spaceflight. Integrin complexes transmit force between the inside and outside of muscle cells and signal changes in muscle size in response to force and, perhaps, disuse. We therefore investigated the effects of acute decreases in expression of the genes encoding these multi-protein complexes. We find that in fully developed adult Caenorhabditis elegans muscle, RNAi against genes encoding core, and peripheral, members of these complexes induces protein degradation, myofibrillar and mitochondrial dystrophies, and a movement defect. Genetic disruption of Z-line– or M-line–specific complex members is sufficient to induce these defects. We confirmed that defects occur in temperature-sensitive mutants for two of the genes: unc-52, which encodes the extra-cellular ligand Perlecan, and unc-112, which encodes the intracellular component Kindlin-2. These results demonstrate that integrin containing attachment complexes, as a whole, are required for proper maintenance of adult muscle. These defects, and collapse of arrayed attachment complexes into ball like structures, are blocked when DIM-1 levels are reduced. Degradation is also blocked by RNAi or drugs targeting calpains, implying that disruption of integrin containing complexes results in calpain activation. In wild-type animals, either during development or in adults, RNAi against calpain genes results in integrin muscle attachment disruptions and consequent sub-cellular defects. These results demonstrate that calpains are required for proper assembly and maintenance of integrin attachment complexes. Taken together our data provide in vivo evidence that a calpain-based molecular repair mechanism exists for dealing with attachment complex disruption in adult muscle. Since C. elegans lacks satellite cells, this mechanism is intrinsic to the muscles and raises the question if such a mechanism also exists in higher metazoans.
Page 1 /470569
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.