Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 3 )

2019 ( 27 )

2018 ( 22 )

2017 ( 23 )

Custom range...

Search Results: 1 - 10 of 11575 matches for " Elena Simona Lohan "
All listed articles are free for downloading (OA Articles)
Page 1 /11575
Display every page Item
Limited Bandwidths and Correlation Ambiguities: Do They Co-Exist in Galileo Receivers  [PDF]
Elena Simona Lohan
Positioning (POS) , 2011, DOI: 10.4236/pos.2011.21002
Abstract: Galileo is the Global Navigation Satellite System that Europe is building and it is planned to be operational in the next 3-5 years. Several Galileo signals use split-spectrum modulations, such as Composite Binary Offset Carrier (CBOC) modulation, which create correlation ambiguities when processed with large or infinite front-end bandwidths (i.e., in wideband receivers). The correlation ambiguities refer to the notches in the correlation shape (i.e., in the envelope of the correlation between incoming signal and reference modulated code) which happen within +/– 1 chip from the main peak. These correlation ambiguities affect adversely the detection probabilities in the code acquisition process and are usually dealt with by using some form of unambiguous processing (e.g., BPSK-like techniques, sideband processing, etc.). In some applications, such as mass-market applications, a narrowband Galileo receiver (i.e., with considerable front-end bandwidth limitation) is likely to be employed. The question addressed in this paper, which has not been answered before, is whether or not this bandwidth limitation can cope inherently with the ambiguities of the correlation function, to which extent, and which the best design options are in the acquisition process (e.g., in terms of time-bin step and ambiguity mitigation mechanisms).
Analysis of Filter-Bank-Based Methods for Fast Serial Acquisition of BOC-Modulated Signals
Elena Simona Lohan
EURASIP Journal on Wireless Communications and Networking , 2007, DOI: 10.1155/2007/25178
Abstract: Binary-offset-carrier (BOC) signals, selected for Galileo and modernized GPS systems, pose significant challenges for the code acquisition, due to the ambiguities (deep fades) which are present in the envelope of the correlation function (CF). This is different from the BPSK-modulated CDMA signals, where the main correlation lobe spans over 2-chip interval, without any ambiguities or deep fades. To deal with the ambiguities due to BOC modulation, one solution is to use lower steps of scanning the code phases (i.e., lower than the traditional step of 0.5 chips used for BPSK-modulated CDMA signals). Lowering the time-bin steps entails an increase in the number of timing hypotheses, and, thus, in the acquisition times. An alternative solution is to transform the ambiguous CF into an ¢ € unambiguous ¢ € CF, via adequate filtering of the signal. A generalized class of frequency-based unambiguous acquisition methods is proposed here, namely the filter-bank-based (FBB) approaches. The detailed theoretical analysis of FBB methods is given for serial-search single-dwell acquisition in single path static channels and a comparison is made with other ambiguous and unambiguous BOC acquisition methods existing in the literature.
Effect of Narrowband Interference on Galileo E1 Signal Receiver Performance
Jie Zhang,Elena-Simona Lohan
International Journal of Navigation and Observation , 2011, DOI: 10.1155/2011/959871
Abstract: Satellite navigation technology is becoming essential for civil application. The high-accuracy navigation service is demanded. However, the satellite signal may be exposed to the signal from other systems, which are sharing the same frequency band. This is a potential threat for the performance of navigation devices. The aim of this paper is to present an interference impact assessment in the context of global navigation based on the new modulation Composite Binary Offset Carrier (CBOC) that will be used for Galileo E1 civil signal. The focus is on the analysis of the Galileo CBOC-modulated signal robustness against narrowband interference. 1. Introduction Satellite navigation is a process of providing autonomous global geospatial position with coverage all over the world. The navigation technology is essential for several civil applications, such as in the transportation field (e.g., road, rail, and aviation). Other applications, such as precision agriculture, wildlife behavior monitoring, surveying, and time-based applications are also based on the estimation of users’ Position, Velocity, and Time (PVT) [1]. These applications, especially the ones dealing with safety, require high accuracy of users’ PVT estimation. The Global Navigation Satellite Systems (GNSSs) signals are allocated to Radio Navigation Satellite Services (RNSSs) and Aeronautical Radio Navigation Services (ARNSs) on a worldwide coprimary basis. However, the Global Navigation Satellite Systems (GNSSs) signals may be exposed to potential interference from other services that are sharing the similar frequency band. They could likely represent potential threats for GNSS devices. The interference may degrade the GNSS receivers’ performance and compromise the safety. Potential interferences are largely emanated from unintentional source or intentional jamming and spoofing of GNSS signal. Radio frequency interference (RFI) is one of the unintentional interference sources, whose frequency might be located in the satellite signal bands. RFI is normally classified as either wideband or narrowband, depending on whether its bandwidth is large or small relative to the bandwidth of the desired GNSS signal. Wideband interference can be a Gaussian waveform as in the case of Ultra-Wideband (UWB) systems or harmonic from television transmission overcoming the front-end filter of a GNSS receiver [2]. Narrowband interference could originate from Amplitude Modulation (AM) or Frequency Modulation (FM) station. The interference represents an impairing factor in GNSS application mainly due to the low power
Advanced Multipath Mitigation Techniques for Satellite-Based Positioning Applications
Mohammad Zahidul H. Bhuiyan,Elena Simona Lohan
International Journal of Navigation and Observation , 2010, DOI: 10.1155/2010/412393
Abstract: Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSS), such as the Global Positioning System (GPS) or the future European satellite navigation system Galileo. Multipath is generally considered undesirable in the context of GNSS, since the reception of multipath can make significant distortion to the shape of the correlation function used for time delay estimation. However, some wireless communications techniques exploit multipath in order to provide signal diversity though in GNSS, the major challenge is to effectively mitigate the multipath, since we are interested only in the satellite-receiver transit time offset of the Line-Of-Sight (LOS) signal for the receiver's position estimate. Therefore, the multipath problem has been approached from several directions in order to mitigate the impact of multipath on navigation receivers, including the development of novel signal processing techniques. In this paper, we propose a maximum likelihood-based technique, namely, the Reduced Search Space Maximum Likelihood (RSSML) delay estimator, which is capable of mitigating the multipath effects reasonably well at the expense of increased complexity. The proposed RSSML attempts to compensate the multipath error contribution by performing a nonlinear curve fit on the input correlation function, which finds a perfect match from a set of ideal reference correlation functions with certain amplitude(s), phase(s), and delay(s) of the multipath signal. It also incorporates a threshold-based peak detection method, which eventually reduces the code-delay search space significantly. However, the downfall of RSSML is the memory requirement which it uses to store the reference correlation functions. The multipath performance of other delay-tracking methods previously studied for Binary Phase Shift Keying-(BPSK-) and Sine Binary Offset Carrier- (SinBOC-) modulated signals is also analyzed in closed loop model with the new Composite BOC (CBOC) modulation chosen for Galileo E1 signal. The simulation results show that the RSSML achieves the best multipath mitigation performance in a uniformly distributed two-to-four paths Rayleigh fading channel model for all three modulated signals. 1. Introduction Multipath remains a dominant source of ranging errors in Global Navigation Satellite Systems (GNSSs), such as the Global Positioning System (GPS) or the future European satellite navigation system, Galileo. Several approaches have been used in order to reduce the multipath error. Among them, the use of special multipath-limiting antennas
Feedforward Delay Estimators in Adverse Multipath Propagation for Galileo and Modernized GPS Signals
Lohan Elena Simona,Lakhzouri Abdelmonaem,Renfors Markku
EURASIP Journal on Advances in Signal Processing , 2006,
Abstract: The estimation with high accuracy of the line-of-sight delay is a prerequisite for all global navigation satellite systems. The delay locked loops and their enhanced variants are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. The new satellite positioning system proposals specify higher code-epoch lengths compared to the traditional GPS signal and the use of a new modulation, the binary offset carrier (BOC) modulation, which triggers new challenges in the delay tracking stage. We propose and analyze here the use of feedforward delay estimation techniques in order to improve the accuracy of the delay estimation in severe multipath scenarios. First, we give an extensive review of feedforward delay estimation techniques for CDMA signals in fading channels, by taking into account the impact of BOC modulation. Second, we extend the techniques previously proposed by the authors in the context of wideband CDMA delay estimation (e.g., Teager-Kaiser and the projection onto convex sets) to the BOC-modulated signals. These techniques are presented as possible alternatives to the feedback tracking loops. A particular attention is on the scenarios with closely spaced paths. We also discuss how these feedforward techniques can be implemented via DSPs.
Performance of Deconvolution Methods in Estimating CBOC-Modulated Signals
Danai Skournetou,Ali H. Sayed,Elena Simona Lohan
International Journal of Navigation and Observation , 2011, DOI: 10.1155/2011/356975
Abstract: Multipath propagation is one of the most difficult error sources to compensate in global navigation satellite systems due to its environment-specific nature. In order to gain a better understanding of its impact on the received signal, the establishment of a theoretical performance limit can be of great assistance. In this paper, we derive the Cramer Rao lower bounds (CRLBs), where in one case, the unknown parameter vector corresponds to any of the three multipath signal parameters of carrier phase, code delay, and amplitude, and in the second case, all possible combinations of joint parameter estimation are considered. Furthermore, we study how various channel parameters affect the computed CRLBs, and we use these bounds to compare the performance of three deconvolution methods: least squares, minimum mean square error, and projection onto convex space. In all our simulations, we employ CBOC modulation, which is the one selected for future Galileo E1 signals. 1. Introduction In order for a user to compute their three-dimensional position and to correct the clock offset, the distance between its GNSS receiver and at least four satellites is required. Mass market receivers of code division multiple access- (CDMA-) based positioning compute the unknown distance (also known as pseudorange) by estimating the total code delay. Apart from the propagation delay, the signal undergoes a variety of channel distortions (such as those caused by ionosphere and troposphere layers) which introduce further delays [1]. Multipath propagation is a major source of error in the range measurement, because it can significantly delay the signal and it cannot be mitigated with differential methods due to its site-specific nature [2]. Environments prone to multipath effects are densely built areas or areas with large obstacles, which are typically encountered in metropolitan areas, where the concentration of GNSS users is high. If the receiver does not estimate the multipath delay with sufficient accuracy, then it suffers a degradation in the accuracy of range estimation and an increase in the processing time [3]. The distortion effects of multipath propagation have been known to the GNSS community for long time, and several efforts to mitigate them have taken place. A large portion of these efforts has been focused on the tracking stage of a receiver where fine estimates of the line-of-sight (LOS) code delay and carrier phase are required. One of the most commonly used code tracking structures are the so-called Delay locked loops (DLLs), which belong to the category of feedback
Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning
Lakhzouri Abdelmonaem,Lohan Elena Simona,Hamila Ridha,Renfors Markku
EURASIP Journal on Advances in Signal Processing , 2003,
Abstract: In mobile positioning, it is very important to estimate correctly the delay between the transmitter and the receiver. When the receiver is in line-of-sight (LOS) condition with the transmitter, the computation of the mobile position in two dimensions becomes straightforward. In this paper, the problem of LOS detection in WCDMA for mobile positioning is considered, together with joint estimation of the delays and channel coefficients. These are very challenging topics in multipath fading channels because LOS component is not always present, and when it is present, it might be severely affected by interfering paths spaced at less than one chip distance (closely spaced paths). The extended Kalman filter (EKF) is used to estimate jointly the delays and complex channel coefficients. The decision whether the LOS component is present or not is based on statistical tests to determine the distribution of the channel coefficient corresponding to the first path. The statistical test-based techniques are practical, simple, and of low computation complexity, which is suitable for WCDMA receivers. These techniques can provide an accurate decision whether LOS component is present or not.
Code Tracking Algorithms for Mitigating Multipath Effects in Fading Channels for Satellite-Based Positioning
Mohammad Zahidul H. Bhuiyan,Elena Simona Lohan,Markku Renfors
EURASIP Journal on Advances in Signal Processing , 2007, DOI: 10.1155/2008/863629
Abstract: The ever-increasing public interest in location and positioning services has originated a demand for higher performance global navigation satellite systems (GNSSs). In order to achieve this incremental performance, the estimation of line-of-sight (LOS) delay with high accuracy is a prerequisite for all GNSSs. The delay lock loops (DLLs) and their enhanced variants (i.e., feedback code tracking loops) are the structures of choice for the commercial GNSS receivers, but their performance in severe multipath scenarios is still rather limited. In addition, the new satellite positioning system proposals specify the use of a new modulation, the binary offset carrier (BOC) modulation, which triggers a new challenge in the code tracking stage. Therefore, in order to meet this emerging challenge and to improve the accuracy of the delay estimation in severe multipath scenarios, this paper analyzes feedback as well as feedforward code tracking algorithms and proposes the peak tracking (PT) methods, which are combinations of both feedback and feedforward structures and utilize the inherent advantages of both structures. We propose and analyze here two variants of PT algorithm: PT with second-order differentiation (Diff2), and PT with Teager Kaiser (TK) operator, which will be denoted herein as PT(Diff2) and PT(TK), respectively. In addition to the proposal of the PT methods, the authors propose also an improved early-late-slope (IELS) multipath elimination technique which is shown to provide very good mean-time-to-lose-lock (MTLL) performance. An implementation of a noncoherent multipath estimating delay locked loop (MEDLL) structure is also presented. We also incorporate here an extensive review of the existing feedback and feedforward delay estimation algorithms for direct sequence code division multiple access (DS-CDMA) signals in satellite fading channels, by taking into account the impact of binary phase shift keying (BPSK) as well as the newly proposed BOC modulation, more specifically, sine-BOC(1,1) (SinBOC(1,1)), selected for Galileo open service (OS) signal. The state-of-art algorithms are compared, via simulations, with the proposed algorithms. The main focus in the performance comparison of the algorithms is on the closely spaced multipath scenario, since this situation is the most challenging for estimating LOS component with high accuracy in positioning applications.
Efficient Delay Tracking Methods with Sidelobes Cancellation for BOC-Modulated Signals
Adina Burian,Elena Simona Lohan,Markku Kalevi Renfors
EURASIP Journal on Wireless Communications and Networking , 2007, DOI: 10.1155/2007/72626
Abstract: In positioning applications, where the line of sight (LOS) is needed with high accuracy, the accurate delay estimation is an important task. The new satellite-based positioning systems, such as Galileo and modernized GPS, will use a new modulation type, that is, the binary offset carrier (BOC) modulation. This type of modulation creates multiple peaks (ambiguities) in the envelope of the correlation function, and thus triggers new challenges in the delay-frequency acquisition and tracking stages. Moreover, the properties of BOC-modulated signals are yet not well studied in the context of fading multipath channels. In this paper, sidelobe cancellation techniques are applied with various tracking structures in order to remove or diminish the side peaks, while keeping a sharp and narrow main lobe, thus allowing a better tracking. Five sidelobe cancellation methods (SCM) are proposed and studied: SCM with interference cancellation (IC), SCM with narrow correlator, SCM with high-resolution correlator (HRC), SCM with differential correlation (DC), and SCM with threshold. Compared to other delay tracking methods, the proposed SCM approaches have the advantage that they can be applied to any sine or cosine BOC-modulated signal. We analyze the performances of various tracking techniques in the presence of fading multipath channels and we compare them with other methods existing in the literature. The SCM approaches bring improvement also in scenarios with closely-spaced paths, which are the most problematic from the accurate positioning point of view.
A Highly Efficient Generalized Teager-Kaiser-Based Technique for LOS Estimation in WCDMA Mobile Positioning
Ridha Hamila,Abdelmonaem Lakhzouri,Elena Simona Lohan,Markku Renfors
EURASIP Journal on Advances in Signal Processing , 2005, DOI: 10.1155/asp.2005.698
Abstract: Line-of-sight signal delay estimation is a crucial element for any mobile positioning system. Estimating correctly the delay of the first arriving path is a challenging topic in severe propagation environments, such as closely spaced multipaths in multiuser scenario. Previous studies showed that there are many linear and nonlinear techniques able to solve closely spaced multipaths when the system is not bandlimited. However, using root raised cosine (RRC) pulse shaping introduces additional errors in the delay estimation process compared to the case with rectangular pulse shaping due to the inherent bandwidth limitation. In this paper, we introduce a novel technique for asynchronous WCDMA multipath delay estimation based on deconvolution with a suitable pulse shape, followed by Teager-Kaiser operator. The deconvolution stage is employed to reduce the effect of the bandlimiting pulse shape.
Page 1 /11575
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.