oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 202 )

2018 ( 308 )

2017 ( 276 )

2016 ( 376 )

Custom range...

Search Results: 1 - 10 of 167581 matches for " E. Litvinovich "
All listed articles are free for downloading (OA Articles)
Page 1 /167581
Display every page Item
Looking for antineutrino flux from $^{40}$K with large liquid scintillator detector
V. V. Sinev,L. B. Bezrukov,E. A. Litvinovich,I. N. Machulin,M. D. Skorokhvatov,S. V. Sukhotin
Physics , 2014, DOI: 10.1134/S1063779615020173
Abstract: We regard the possibility of detecting the antineutrino flux producing by the $^{40}$K placing inside the Earth. Thermal flux of the Earth could be better understood with observing such a flux. Lower and upper limitations on the $^{40}$K antineutrino flux are presented.
Atrial expression of the CCN1 and CCN2 proteins in chronic heart failure
Tomasz A. Bonda,Karol A. Kamiński,Magdalena Dziemidowicz,Sergey Litvinovich
Folia Histochemica et Cytobiologica , 2012, DOI: 10.5603/18703
Abstract: Previous studies have reported the upregulation of CCN proteins early after acute heart injury. The aim of the present work was to evaluate the expression of the CCN1 and CCN2 proteins and their regulation by angiotensin II in the atrial myocardium of a chronically failing heart. Male adult mice were subjected to ligation of the left coronary artery to produce myocardial infarction (the MI group), and 16 of them were treated for 12 weeks with the AT1 receptor antagonist telmisartan (the MI-Tel group). Sham-operated mice served as controls. The expression of proteins was evaluated by immunohistochemistry 12 weeks after the operation. In shamoperated mice, stainings for CCN1 and CCN2 proteins were positive within atrial cardiomyocytes. CCN1-positive reaction revealed diffused cytoplasmic localization, while CCN2 was present mainly within the perinuclear cytoplasm. CCN1 was upregulated in the MI group, while CCN2 remained at basal level. Telmisartan prevented the upregulation of CCN1 and decreased CCN2 level. We compared the experimental data with the expression of CCN1 and CCN2 proteins in human right atrial appendages. We found an inverse, but not significant, relation between the level of either protein and the left ventricular ejection fraction. This suggests a similar atrial regulation of CCN1 and CCN2 expression also in humans. We conclude that in the murine atria, CCN1 and CCN2 proteins are expressed constitutively. In chronic heart failure, CCN proteins tend to be upregulated, which may be related to the action of angiotensin II.
Perspectives to measure neutrino-nuclear neutral current coherent scattering with two-phase emission detector
RED Collaboration,D. Yu. Akimov,I. S. Alexandrov,V. I. Aleshin,V. A. Belov,A. I. Bolozdynya,A. A. Burenkov,A. S. Chepurnov,M. V. Danilov,A. V. Derbin,V. V. Dmitrenko,A. G. Dolgolenko,D. A. Egorov,Yu. V. Efremenko,A. V. Etenko,M. B. Gromov,M. A. Gulin,S. V. Ivakhin,V. A. Kantserov,V. A. Kaplin,A. K. Karelin,A. V. Khromov,M. A. Kirsanov,S. G. Klimanov,A. S. Kobyakin,A. M. Konovalov,A. G. Kovalenko,V. I. Kopeikin,T. D. Krakhmalova,A. V. Kuchenkov,A. V. Kumpan,E. A. Litvinovich,G. A Lukyanchenko,I. N. Machulin,V. P. Martemyanov,N. N. Nurakhov,D. G. Rudik,I. S. Saldikov,M. D. Skorokhatov,V. V. Sosnovtsev,V. N. Stekhanov,M. N. Strikhanov,S. V. Sukhotin,V. G. Tarasenkov,G. V. Tikhomirov,O. Ya. Zeldovich
Physics , 2012, DOI: 10.1088/1748-0221/8/10/P10023
Abstract: We propose to detect and to study neutrino neutral current coherent scattering off atomic nuclei with a two-phase emission detector using liquid xenon as a working medium. Expected signals and backgrounds are calculated for two possible experimental sites: Kalinin Nuclear Power Plant in the Russian Federation and Spallation Neutron Source at the Oak Ridge National Laboratory in the USA. Both sites have advantages as well as limitations. However the experiment looks feasible at either location. Preliminary design of the detector and supporting R&D program are discussed.
A test of electric charge conservation with Borexino
Borexino Collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,A. Vishneva,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015, DOI: 10.1103/PhysRevLett.115.231802
Abstract: Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau > 6.6 10**28 yr at 90 % C.L., is two orders of magnitude better than the previous limit.
Measurement of neutrino flux from the primary proton--proton fusion process in the Sun with Borexino detector
O. Y. Smirnov,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Sch?nert,D. Semenov,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015,
Abstract: Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10$^{5}$ years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C.L.
Spectroscopy of geo-neutrinos from 2056 days of Borexino data
Borexino collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. DAngelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,G. Fiorentini,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhavatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Woicik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Statistics , 2015, DOI: 10.1103/PhysRevD.92.031101
Abstract: We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5\pm0.3)\times10^{31}$ proton$\times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 \times 10^{-9}$ (5.9$\sigma$). A geo-neutrino signal from the mantle is obtained at 98\% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
Solar neutrino physics with Borexino I
L. Ludhova,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,C. Carraro,P. Cavalcante,A. Chavarria,D. D'Angelo,S. Davini,A. Derbin,A. Etenko,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Nef,A. Goretti,L. Grandi,E. Guardincerri,S. Hardy,Aldo Ianni,Andrea Ianni,A. Kayunov,V. Kobychev,D. Korablev,G. Korga,Y. Koshio,D. Kryn,M. Laubenstein,T. Lewke,E. Litvinovich,B. Loer,F. Lombardi,P. Lombardi,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,D. Montanari,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolenksy,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,R. S. Raghavan,G. Ranucci,A. Razeto,A. Re,P. A. Romani,A. Sabelnikov,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. Von Feilitzsch,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Physics , 2012,
Abstract: Borexino is a large-volume liquid scintillator detector installed in the underground halls of the Laboratori Nazionali del Gran Sasso in Italy. After several years of construction, data taking started in May 2007. The Borexino phase I ended after about three years of data taking. Borexino provided the first real time measurement of the $^{7}$Be solar neutrino interaction rate with accuracy better than 5% and confirmed the absence of its day-night asymmetry with 1.4% precision. This latter Borexino results alone rejects the LOW region of solar neutrino oscillation parameters at more than 8.5 $\sigma$ C.L. Combined with the other solar neutrino data, Borexino measurements isolate the MSW-LMA solution of neutrino oscillations without assuming CPT invariance in the neutrino sector. Borexino has also directly observed solar neutrinos in the 1.0-1.5 MeV energy range, leading to the first direct evidence of the $pep$ solar neutrino signal and the strongest constraint of the CNO solar neutrino flux up to date. Borexino provided the measurement of the solar $^{8}$B neutrino rate with 3 MeV energy threshold.
Solar neutrino with Borexino: results and perspectives
O. Smirnov,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,G. Fiorentini,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,Q. Meindl,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,H. Wang,J. Winter,M. Wojcik,A. Wright,M. Wurm,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014, DOI: 10.1134/S1063779615020185
Abstract: Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.
Recent Borexino results and prospects for the near future
D. D'Angelo,G. Bellini,J. Benziger,D. Bick,G. Bonfini,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,P. Cavalcante,A. Chavarria,A. Chepurnov,S. Davini,A. Derbin,A. Empl,A. Etenko,F. von Feilitzsch,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014,
Abstract: The Borexino experiment, located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos. The data taking campaign phase I (2007 - 2010) has allowed the first independent measurements of 7Be, 8B and pep fluxes as well as the first measurement of anti-neutrinos from the earth. After a purification of the scintillator, Borexino is now in phase II since 2011. We review here the recent results achieved during 2013, concerning the seasonal modulation in the 7Be signal, the study of cosmogenic backgrounds and the updated measurement of geo-neutrinos. We also review the upcoming measurements from phase II data (pp, pep, CNO) and the project SOX devoted to the study of sterile neutrinos via the use of a 51Cr neutrino source and a 144Ce-144Pr antineutrino source placed in close proximity of the active material.
Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth
G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,M. Buizza Avanzini,B. Caccianiga,L. Cadonati,F. Calaprice,C. Carraro,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Etenko,F. von Feilitzsch,K. Fomenko,D. Franco,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,L. Grandi,E. Guardincerri,C. Hagner,S. Hardy,Aldo Ianni,Andrea Ianni,D. Korablev,G. Korga,Y. Koshio,D. Kryn,M. Laubenstein,T. Lewke,E. Litvinovich,B. Loer,F. Lombardi,P. Lombardi,L. Ludhova,I. Machulin,S. Manecki,W. Maneschg,G. Manuzio,Q. Meindl,E. Meroni,L. Miramonti,M. Misiaszek,D. Montanari,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,R. S. Raghavan,G. Ranucci,A. Razeto,A. Re,A. Romani,A. Sabelnikov,R. Saldanha,C. Salvo,S. Sch?nert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,J. Winter,M. Wojcik,A. Wright,M. Wurm,J. Xu,O. Zaimidoroga,S. Zavatarelli,G. Zuzel
Physics , 2012, DOI: 10.1088/1475-7516/2012/05/015
Abstract: We have measured the muon flux at the underground Gran Sasso National Laboratory (3800 m w.e.) to be (3.41 \pm 0.01) \times 10-4m-2s-1 using four years of Borexino data. A modulation of this signal is observed with a period of (366\pm3) days and a relative amplitude of (1.29 \pm 0.07)%. The measured phase is (179 \pm 6) days, corresponding to a maximum on the 28th of June. Using the most complete atmospheric data models available, muon rate fluctuations are shown to be positively correlated with atmospheric temperature, with an effective coefficient {\alpha}T = 0.93 \pm 0.04. This result represents the most precise study of the muon flux modulation for this site and is in good agreement with expectations.
Page 1 /167581
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.