oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 3 )

2019 ( 412 )

2018 ( 636 )

2017 ( 621 )

Custom range...

Search Results: 1 - 10 of 341249 matches for " E. Kyr?l? "
All listed articles are free for downloading (OA Articles)
Page 1 /341249
Display every page Item
An alternative explanation of PMSE-like scatter in MF radar data
V. F. Sofieva, E. Kyr ,E. Kyr l
Annales Geophysicae (ANGEO) , 2004,
Abstract: This paper discusses the smoothness of vertical profiles of ozone concentrations. We describe the smoothness of ozone profiles via a characteristic scale of the profile fluctuations. The characteristic scale was computed for 11-years (1989-1999) ozone sonde data at Sodankyl . Mean values of the characteristic scale were determined. They are ~1km in the troposphere and ~1.4km in the lower stratosphere (up to 25km). Only slight seasonal variations of these parameters are observed. The information about smoothness of ozone profiles is needed both in the instrumental design for defining the vertical resolution requirements and in the development of inversion algorithms from remote sensing measurements, in order to obtain the best accuracy in retrieved ozone profiles and sufficient resolution. Full Article (PDF, 2675 KB) Citation: Sofieva, V. F., Kyr , E., and Kyr l , E.: Smoothness of ozone profiles: analysis of 11 years of ozone sonde measurements at Sodankyl , Ann. Geophys., 22, 2723-2727, doi:10.5194/angeo-22-2723-2004, 2004. Bibtex EndNote Reference Manager XML
Modelling the effects of the October 1989 solar proton event on mesospheric odd nitrogen using a detailed ion and neutral chemistry model
P. T. Verronen,E. Turunen,Th. Ulich,E. Kyrl
Annales Geophysicae (ANGEO) , 2003,
Abstract: Solar proton events and electron precipitation affect the concentrations of middle atmospheric constituents. Ionization caused by precipitating particles enhances the production of important minor neutral constituents, such as nitric oxide, through reaction chains in which ionic reactions play an important role. The Sodankyl Ion Chemistry model (SIC) has been modified and extended into a detailed ion and neutral chemistry model of the mesosphere. Our steady-state model (containing 55 ion species, 8 neutral species, and several hundred chemical reactions) is used to investigate the effect of the October 1989 solar proton event on odd nitrogen at altitudes between 50–90 km. The modelling results show that the NO concentration is significantly enhanced due to the proton precipitation, reaching 107 –108 cm-3 throughout the mesosphere on the 20 October when the proton forcing was most severe. A comparison between the chemical production channels of odd nitrogen indicates that ion chemical reactions are an important factor in the total odd nitrogen production during intense ionization. The modelled electron concentration for the 23 October is compared with EISCAT incoherent scatter radar measurements and a reasonable agreement is found. Key words. Atmospheric composition and structure (Middle atmosphere – composition and chemistry); Ionosphere (Particle precipitation)
Retrieval of atmospheric parameters from GOMOS data
E. Kyrl,J. Tamminen,V. Sofieva,J. L. Bertaux
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2010, DOI: 10.5194/acp-10-11881-2010
Abstract: The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on board the European Space Agency's ENVISAT satellite measures attenuation of stellar light in occultation geometry. Daytime measurements also record scattered solar light from the atmosphere. The wavelength regions are the ultraviolet-visible band 248–690 nm and two infrared bands at 755–774 nm and at 926–954 nm. From UV-Visible and IR spectra the vertical profiles of O3, NO2, NO3, H2O, O2 and aerosols can be retrieved. In addition there are two 1 kHz photometers at blue 473–527 nm and red 646–698 nm. Photometer data are used to correct spectrometer measurements for scintillations and to retrieve high resolution temperature profiles as well as gravity wave and turbulence parameters. Measurements cover altitude region 5–150 km. Atmospherically valid data are obtained in 15–100 km. In this paper we present an overview of the GOMOS retrieval algorithms for stellar occultation measurements. The low signal-to-noise ratio and the refractive effects due to the point source nature of stars have been important drivers in the development of GOMOS retrieval algorithms. We present first the Level 1b algorithms that are used to correct instrument related disturbances in the spectrometer and photometer measurements The Level 2 algorithms deal with the retrieval of vertical profiles of atmospheric gaseous constituents, aerosols and high resolution temperature. We divide the presentation into correction for refractive effects, high resolution temperature retrieval and spectral/vertical inversion. The paper also includes discussion about the GOMOS algorithm development, expected improvements, access to GOMOS data and alternative retrieval approaches.
Retrieval of atmospheric parameters from GOMOS data
E. Kyrl,J. Tamminen,V. Sofieva,J. L. Bertaux
Atmospheric Chemistry and Physics Discussions , 2010, DOI: 10.5194/acpd-10-10145-2010
Abstract: The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument on board the European Space Agency's ENVISAT satellite measures attenuation of stellar light in occultation geometry. Daytime measurements also record scattered solar light from the atmosphere. The wavelength regions are the ultraviolet-visible band 248–690 nm and two infrared bands at 755–774 nm and at 926–954 nm. From UV-Visible and IR spectra the vertical profiles of O3, NO2, NO3, H2O, O2 and aerosols can be retrieved. In addition there are two 1 kHz photometers at blue 473–527 nm and red 646–698 nm. Photometer data are used to correct spectrometer measurements for scintillations and to retrieve high resolution temperature profiles as well as gravity wave and turbulence parameters. Measurements cover altitude region 5–150 km. Atmospherically valid data are obtained in 15–100 km. In this paper we present an overview of the GOMOS retrieval algorithms for stellar occultation measurements. The low signal-to-noise ratio and the refractive effects due to the point source nature of stars have been important drivers in the development of GOMOS retrieval algorithms. We present first the Level 1b algorithms that are used to correct instrument related disturbances in the spectrometer and photometer measurements The Level 2 algorithms deal with the retrieval of vertical profiles of atmospheric gaseous constituents, aerosols and high resolution temperature. We divide the presentation into correction for refractive effects, high resolution temperature retrieval and spectral/vertical inversion. The paper also includes discussion about the GOMOS algorithm development, expected improvements, access to GOMOS data and alternative retrieval approaches.
Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT
J. L. Bertaux,E. Kyrl,D. Fussen,A. Hauchecorne
Atmospheric Chemistry and Physics Discussions , 2010, DOI: 10.5194/acpd-10-9917-2010
Abstract: GOMOS on ENVISAT (launched in February, 2002) is the first space instrument dedicated to the study of the atmosphere of the Earth by the technique of stellar occultations (Global Ozone Monitoring by Occultation of Stars). From a polar orbit, it allows to have a good latitude coverage. Because it is self-calibrated, it is particularly well adapted to the long time trend monitoring of stratospheric species. With 4 spectrometers the wavelength coverage of 248 nm to 942 nm allows to monitor ozone, H2O, NO2, NO3, air, aerosols, and O2. Two additional fast photometers (1 kHz sampling rate) allow for the correction of scintillations, as well as the study of the structure of air density irregularities, resulting from gravity waves and turbulence. A high vertical resolution profile of the temperature may also be obtained from the time delay between the red and the blue photometer. Noctilucent clouds (Polar Mesospheric Clouds, PMC), are routinely observed in both polar summers, and global observations of OCLO and sodium are achieved. The instrument configuration, dictated by the scientific objectives rationale and technical constraints, are described, together with the typical operations along one orbit, and statistics over 5 years of operation. Typical atmospheric transmission spectra are presented, and some retrieval difficulties are discussed, in particular for O2 and H2O. An overview of a number of scientific results is presented, already published or found in more details as companion papers in the same ACP GOMOS special issue. This paper is particularly intended to provide the incentive for GOMOS data exploitation, available to the whole scientific community in the ESA data archive, and to help the GOMOS data users to better understand the instrument, its capabilities and the quality of its measurements, for an optimized scientific return.
GOMOS O3, NO2, and NO3 observations in 2002–2008
E. Kyrl,J. Tamminen,V. Sofieva,J. L. Bertaux
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2010, DOI: 10.5194/acp-10-7723-2010
Abstract: The Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument onboard the European Space Agency's ENVISAT satellite measures ozone, NO2, NO3, H2O, O2, and aerosols using the stellar occultation method. Global coverage, good vertical resolution and the self-calibrating measurement method make GOMOS observations a promising data set for building various climatologies and time series. In this paper we present GOMOS nighttime measurements of ozone, NO2, and NO3 during six years 2002–2008. Using zonal averages we show the time evolution of the vertical profiles as a function of latitude. In order to get continuous coverage in time we restrict the latitudinal region to 50° S–50° N. Time development is analysed by fitting constant, annual and semi-annual terms as well as solar and QBO proxies to the daily time series. Ozone data cover the stratosphere, mesosphere and lower thermosphere (MLT). NO2 and NO3 data cover the stratosphere. In addition to detailed analysis of profiles we derive total column distributions using the fitted time series. The time-independent constant term is determined with a good accuracy (better than 1%) for all the three gases. The median retrieval accuracy for the annual and semi-annual term varies in the range 5–20%. For ozone the annual terms dominate in the stratosphere giving early winter ozone maxima at mid-latitudes. Above the ozone layer the annual terms change the phase which results in ozone summer maximum up to 80 km. In the MLT the annual terms dominate up to 80 km where the semiannual terms start to grow. In the equatorial MLT the semi-annual terms dominate the temporal evolution whereas in the mid-latitude MLT annual and semi-annual terms compete evenly. In the equatorial stratosphere the QBO dominates the time development but the solar term is too weak to be determined. In the MLT above 85 km the solar term grows significantly and ozone has 15–20% dependence on the solar cycle. For NO2 below 32 km the annual summer maxima dominates at mid-latitudes whereas in the equatorial region a strong QBO prevails. In northern mid-latitudes a strong solar term appears in the upper stratosphere. For NO3 the annual variation dominates giving rise to summer maxima. The NO3 distribution is controlled by temperature and ozone.
Technical Note: Continuity of MIPAS-ENVISAT operational ozone data quality from full- to reduced-spectral-resolution operation mode
S. Ceccherini, U. Cortesi, P. T. Verronen,E. Kyr l
Atmospheric Chemistry and Physics (ACP) & Discussions (ACPD) , 2008,
Abstract: MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) is operating on the ENVIronmental SATellite (ENVISAT) since March 2002. After two years of nearly continuous limb scanning measurements, at the end of March 2004, the instrument was stopped due to problems with the mirror drive of the interferometer. Operations with reduced maximum path difference, corresponding to both a reduced-spectral-resolution and a shorter measurement time, were resumed on January 2005. In order to exploit the reduction in measurement time, the measurement scenario was changed adopting a finer vertical limb scanning. The change of spectral resolution and of measurement scenario entailed an update of the data processing strategy. The aim of this paper is the assessment of the differences in the quality of the MIPAS ozone data acquired before and after the stop of the operations. Two sets of MIPAS ozone profiles acquired in 2003–2004 (full-resolution measurements) and in 2005–2006 (reduced-resolution measurements) are compared with collocated ozone profiles obtained by GOMOS (Global Ozone Monitoring by Occultation of Stars), itself also onboard ENVISAT. The continuity of the GOMOS data quality allows to assess a possible discontinuity of the MIPAS performances. The relative bias and precision of MIPAS ozone profiles with respect to the GOMOS ones have been compared for the measurements acquired before and after the stop of the MIPAS operations. The results of the comparison show that, in general, the quality of the MIPAS ozone profiles retrieved from reduced-resolution measurements is comparable or better than that obtained from the full-resolution dataset. The only significant change in MIPAS performances is observed at pressures around 2 \unit{hPa}, where the relative bias of the instruments increases by a factor of 2 from the 2003–2004 to 2005–2006 measurements.
Direct comparisons of GOMOS and SAGE III NO3 vertical profiles
J. Hakkarainen, J. Tamminen, J. R. Moore,E. Kyr l
Atmospheric Measurement Techniques (AMT) & Discussions (AMTD) , 2012,
Abstract: In this paper, we present the first global comparisons between the two unique satellite-borne data sets of nitrogen trioxide (NO3) vertical profiles retrieved from the GOMOS (Global Ozone Monitoring by the Occultation of Stars) stellar occultations and the SAGE III (Stratospheric Aerosol and Gas Experiment) lunar occultations. The comparison results indicate that between the altitudes 25 km and 45 km the median difference between these two data sets is within ± 25%. The study of zonal median profiles shows that the climatologies calculated from GOMOS and SAGE III profiles are comparable and represent the same features in all latitude bands. No clear systematic differences are observed. The median profiles are closest in the tropics and slightly deviating at high latitudes.
Retrieval of ozone profiles from GOMOS limb scattered measurements
S. Tukiainen,E. Kyrl,P. T. Verronen,D. Fussen
Atmospheric Measurement Techniques Discussions , 2010, DOI: 10.5194/amtd-3-4355-2010
Abstract: The GOMOS (Global Ozone Monitoring by Occultation of Stars) instrument on board the Envisat satellite measures the vertical composition of the atmosphere using the stellar occultation technique. While the night-time data of GOMOS are proved to be of good quality, the daytime observations are more challenging due to poorer signal-to-noise ratio. In this paper we present an alternative technique, which uses GOMOS limb scattered radiances instead of the stellar signal, to retrieve stratospheric ozone profiles. Like for many other limb-viewing instruments, GOMOS observations contain stray light at high altitudes. We introduce a method for removing the stray light and demonstrate its feasibility by comparing the corrected radiances against those from the OSIRIS (Optical Spectrograph & Infra Red Imaging System) instrument. For the retrieval of ozone profiles, an onion peeling method is used. The first validation results suggest that the retrieval of stratospheric ozone is possible with a typical accuracy better than 10% at 22–50 km. GOMOS has measured about 350 000 daytime profiles since 2002. The new retrieval method presented here makes this large amount of data finally available for scientific use.
Combined SAGE II-GOMOS ozone profile data set 1984–2011 and trend analysis of the vertical distribution of ozone
E. Kyrl,M. Laine,V. Sofieva,J. Tamminen
Atmospheric Chemistry and Physics Discussions , 2013, DOI: 10.5194/acpd-13-10661-2013
Abstract: We have studied data from two satellite occultation instruments in order to generate a high vertical resolution homogeneous ozone time series of 26 yr. The Stratospheric Aerosol and Gas Experimen (SAGE) II solar occultation instrument from 1984–2005 and the Global Ozone Monitoring by Occultation of Stars instrument (GOMOS) from 2002–2012 measured ozone profiles in the stratosphere and mesosphere. Global coverage, good vertical resolution and the self calibrating measurement method make data from these instruments valuable for the detection of changes in vertical distribution of ozone over time. As both instruments share a common measurement period from 2002–2005, it is possible to intercalibrate the data sets. We investigate how well these measurements agree with each other and combine all the data to produce a new stratospheric ozone profile data set. Above 55 km SAGE II measurements show much less ozone than the GOMOS nighttime measurements as a consequence of the well-known diurnal variation of ozone in the mesosphere. Between 35–55 km SAGE II sunrise and sunset measurements differ from each other. Sunrise measurements show 2% less ozone than GOMOS whereas sunset measurements show 4% more ozone than GOMOS. Differences can be explained qualitatively by the diurnal variation of ozone in the stratosphere recently observed by SMILES and modelled by chemical transport models. For 25–35 km SAGE II sunrise and sunset and GOMOS agree within 1%. The observed ozone bias between collocated measurements of SAGE II sunrise/sunset and GOMOS night measurements is used to align the two data sets. The combined data set covers the time period 1984–2011, latitudes 60° S–60° N and the altitude range of 20–60 km. Profile data are given on a 1 km vertical grid, and with a resolution of one month in time and ten degrees in latitude. The combined ozone data set is analyzed by fitting a time series model to the data. We assume a linear trend with an inflexion point (so-called "hockey stick" form). The best estimate for the point of inflexion was found to be the year 1997 for ozone between altitudes 35 and 45 km. At all latitudes and altitudes from 25 km to 50 km we find a clear change in ozone trend before and after the inflexion time. From 38 km to 45 km a negative trend of 0–3% per decade at the equator has changed to a small positive trend of 0–2% per decade except in the altitude range of 30–35 km where the ozone loss has even increased. At mid-latitudes the negative trend of 4–10% per decade has changed to to a small positive trend of 0–2% per decade.
Page 1 /341249
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.