Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 3 )

2019 ( 214 )

2018 ( 300 )

2017 ( 295 )

Custom range...

Search Results: 1 - 10 of 153223 matches for " Donald H. Paterson "
All listed articles are free for downloading (OA Articles)
Page 1 /153223
Display every page Item
Physical activity and functional limitations in older adults: a systematic review related to Canada's Physical Activity Guidelines
Donald H Paterson, Darren ER Warburton
International Journal of Behavioral Nutrition and Physical Activity , 2010, DOI: 10.1186/1479-5868-7-38
Abstract: Prospective cohort studies with an outcome related to functional independence or to cognitive function were searched, as well as exercise training interventions that reported a functional outcome. Electronic database search strategies were used to identify citations which were screened (title and abstract) for inclusion. Included articles were reviewed to complete standardized data extraction tables, and assess study quality. An established system of assessing the level and grade of evidence for recommendations was employed.Sixty-six studies met inclusion criteria for the relationship between physical activity and functional independence, and 34 were included with a cognitive function outcome. Greater physical activity of an aerobic nature (categorized by a variety of methods) was associated with higher functional status (expressed by a host of outcome measures) in older age. For functional independence, moderate (and high) levels of physical activity appeared effective in conferring a reduced risk (odds ratio ~0.5) of functional limitations or disability. Limitation in higher level performance outcomes was reduced (odds ratio ~0.5) with vigorous (or high) activity with an apparent dose-response of moderate through to high activity. Exercise training interventions (including aerobic and resistance) of older adults showed improvement in physiological and functional measures, and suggestion of longer-term reduction in incidence of mobility disability. A relatively high level of physical activity was related to better cognitive function and reduced risk of developing dementia; however, there were mixed results of the effects of exercise interventions on cognitive function indices.There is a consistency of findings across studies and a range of outcome measures related to functional independence; regular aerobic activity and short-term exercise programmes confer a reduced risk of functional limitations and disability in older age. Although a precise characterization of
Shilpa Dogra,Matthew D. Spencer,Donald H. Paterson
Journal of Sports Science and Medicine , 2012,
Abstract: Previous literature has shown that sedentary older women rely on peripheral adaptations to improve cardiorespiratory fitness with endurance training i.e. they show minimal increases in central parameters (cardiac output, Q) in response to endurance training. The purpose of this study therefore was to determine whether endurance trained older women were able to preserve maximal exercise Q and were characterized by a high stroke volume (SV) when compared to physically inactive older women. Trained (n = 7) and untrained (n = 1 0) women attended two maximal and one submaximal laboratory session. Breath-by-breath analysis was conducted using mass spectrometry and Q was assessed using acetylene open circuit inert gas wash-in. Multivariate analysis of variance and paired samples t-tests were used to determine between and within group differences. Trained women had a significantly higher VO2max (37.5 vs. 24.1 ml-1·kg·min-1) compared to untrained women. There were no differences for peripheral oxygen extraction (VO2/Q) at either submaximal or maximal work rates; however trained women had a significantly higher SV at maximal (119.3 vs. 94.6 ml) exercise compared to untrained women. In both trained and untrained women, SV did not rise significantly between submaximal and maximal exercise. Conclusion: Highly fit, endurance trained older women are able to preserve central parameters of VO2max. Peripheral oxygen extraction is similar between older trained and untrained women
Flexibility Training and Functional Ability in Older Adults: A Systematic Review
Liza Stathokostas,Robert M. D. Little,A. A. Vandervoort,Donald H. Paterson
Journal of Aging Research , 2012, DOI: 10.1155/2012/306818
Abstract: Background. As indicated in a recent systematic review relating to Canada’s Physical Activity Guidelines for Older Adults, exercise interventions in older adults can maintain or improve functional abilities. Less is known about the role of flexibility in the maintenance or improvement of functional abilities, and there currently does not exist a synthesis of the literature supporting a consensus on flexibility training prescription. Purpose. To systematically review the effects of flexibility-specific training interventions on measures of functional outcomes in healthy older adults over the age of 65 years. Methods. Five electronic databases were searched for intervention studies involving concepts related to aging, flexibility, functional outcomes, and training interventions. After evaluating the articles for relevance, 22 studies were considered. Results. The results suggested that while flexibility-specific interventions may have effects on range of motion (ROM) outcomes, there is conflicting information regarding both the relationship between flexibility interventions and functional outcomes or daily functioning. Conclusions. Due to the wide range of intervention protocols, body parts studied, and functional measurements, conclusive recommendations regarding flexibility training for older adults or the validity of flexibility training interventions as supplements to other forms of exercise, or as significant positive influences on functional ability, require further investigation. 1. Introduction As indicated in a recent systematic review relating to Canada’s Physical Activity Guidelines for Older Adults, exercise interventions (comprised of aerobic and strength training) in older adults can maintain or improve functional abilities [1]. Less is known about the role of flexibility in the maintenance or improvement of functional abilities. While joint flexibility may decrease with age, with the potential to affect normal daily function, older adults do maintain the ability to improve flexibility through stretching exercises [1]. The 2009 American College of Sports Medicine (ACSM) position statement “Exercise and Physical Activity for Older Adults” [2] noted there is a lack of studies of the effects of range of motion exercises on flexibility outcomes in older populations and a lack of consensus regarding the prescription of stretching exercises for older adults. Despite the lack of a synthesis of the literature to support the recommendation of the inclusion of a flexibility component to older adult exercise programs, many older adult activity programs
Flexibility of Older Adults Aged 55–86 Years and the Influence of Physical Activity
Liza Stathokostas,Matthew W. McDonald,Robert M. D. Little,Donald H. Paterson
Journal of Aging Research , 2013, DOI: 10.1155/2013/743843
Abstract: Cross-sectional age-related differences in flexibility of older adults aged 55–86 years of varying activity levels were examined. Shoulder abduction and hip flexion flexibility measurements were obtained from 436 individuals (205 men, years; 231 women, years). Total physical activity was assessed using the Minnesota Leisure-Time Physical Activity Questionnaire. Shoulder abduction showed a significant decline averaging 5?degrees/decade in men and 6?degrees/decade in women. Piecewise linear regression showed an accelerated decline in men starting at the age of 71 years of 0.80?degrees/year, whereas in women the onset of decline (0.74?degrees/year) was 63 years. Men and women showed a significant decline in hip flexion (men: 6?degrees/decade; women: 7?degrees/decade). Piecewise linear regression revealed a rate of decline of 1.16?degrees/year beginning at 71 years in men and in women a single linear decline of 0.66?degrees/year. Multiple regression analysis showed that age and physical activity accounted for only 9% of the variance in hip flexion in women and 10% in men, with age but not physical activity remaining significant. Similarly for shoulder abduction, age was significant but not physical activity, in a model that described 8% of the variance for both sexes. 1. Introduction As indicated in a recent systematic review by our group [1], there is conflicting information regarding both the relationship between flexibility training interventions and functional outcomes and the relationship between improved flexibility and daily functioning; health benefits have not yet been established. The comparison of studies in this area to provide a prescription of the flexibility is complicated by the variety of limb ranges of motion studied, testing procedures utilized, and methods of assessing physical activity levels. Furthermore, this component of physical health has been somewhat neglected or forgotten in the current literature despite the lack of evidence for recommendations of the amount and type of flexibility needed for health in older adults. Further, despite this lack of a synthesis of the literature to support the recommendation of the inclusion of a flexibility component to older adult exercise programs, many older adult activity programs place a considerable emphasis on flexibility. The present study attempts to add additional insight to this area by presenting the relationship between declines in flexibility across age and functional outcomes in a large sample of individuals representing the older adult age range. Joint flexibility may decrease
A cornucopia of genomes
Andrew H Paterson
Genome Biology , 2006, DOI: 10.1186/gb-2006-7-3-311
Abstract: The 14th annual Plant and Animal Genome conference held recently in San Diego highlighted the challenges facing researchers who attempt to annotate and interpret the burgeoning numbers of plant and animal genome sequences. These include the genomes of the world's leading crops and provide valuable models for the study of genetics, evolution and development. More than 80 workshops addressed emerging results and opportunities, as well as technological developments, in a host of plant, animal and microbial genomes. Two recurring themes of the meeting were the continuing 'siliconization' of plant and animal biology and the rapid progress being made in understanding the mechanisms of epigenetics and its biological roles.Progress in sequencing plant genomes was highlighted by Aristotle Patrinos (US Department of Energy (DOE), Washington DC, USA) who announced that the Joint Genome Institute will be sequencing the soybean (Glycine max) genome, to add to its current whole-genome sequencing projects for sorghum (Sorghum bicolor), Arabidopsis lyrata and Capsella rubella (close relatives of the model plant Arabidopsis thaliana), and Mimulus guttatus (monkey flower), and its participation in the maize (Zea mays) genome project. Patrinos briefly outlined DOE systems biology approaches to its missions, in particular a 10-15-year goal of its 'Genomes To Life' program to generate a microbial sequence, produce all proteins and molecular tags, identify multiprotein complexes, generate regulatory networks, identify metabolic capabilities and engineer control strategies - "all in a few days".Patrinos's description of the informatics challenge as a "tsunami looming over genome projects" was further elaborated on by Kimmen Sjolander (University of California, Berkeley, USA), who noted that only 3% of gene annotations have empirical support. In addition to mechanical and/or technical errors, domain shuffling and gene duplication play an important role in generating annotation errors. Sjol
Genomics of Sorghum
Andrew H. Paterson
International Journal of Plant Genomics , 2008, DOI: 10.1155/2008/362451
Abstract: Sorghum (Sorghum bicolor (L.) Moench) is a subject of plant genomics research based on its importance as one of the world's leading cereal crops, a biofuels crop of high and growing importance, a progenitor of one of the world's most noxious weeds, and a botanical model for many tropical grasses with complex genomes. A rich history of genome analysis, culminating in the recent complete sequencing of the genome of a leading inbred, provides a foundation for invigorating progress toward relating sorghum genes to their functions. Further characterization of the genomes other than Saccharinae cereals may shed light on mechanisms, levels, and patterns of evolution of genome size and structure, laying the foundation for further study of sugarcane and other economically important members of the group.
Tool support for implementation of object-oriented class relationships and patterns
James H. Paterson,John Haddow
ITALICS , 2007,
Abstract: This paper reports the use of the PatternCoder tool in the teaching of object-oriented design and programming. This tool has been developed by the authors as an extension to the BlueJ Java Integrated Development Environment (IDE). PatternCoder encapsulates knowledge of design patterns and basic class relationships, and of the techniques required for their implementation in Java. It guides students through a step-by-step process: select an appropriate pattern or relationship; give the classes which participate in the pattern names relevant to the current problem domain; and generate code for minimal Java class definitions which can then be explored and extended. The tool was initially developed with a view to teaching advanced design patterns, but we have explored its use within introductory classes, viewing binary class relationships as simple design patterns. Initial experience with the tool within an introductory Java module has been positive, with students actively choosing to use the tool and feeling that the teaching approach based on its use was beneficial to their understanding of class relationships.
Quantitative measurement of p53-p53 antibody interactions by quartz crystal microbalance: A modelsystem for immunochemical calibration  [PDF]
Donald H. Atha, Vytas Reipa
Journal of Biophysical Chemistry (JBPC) , 2012, DOI: 10.4236/jbpc.2012.33024
Abstract: We are developing methods to quantify antibody interactions that include a quartz crystal microbalance (QCM) system to measure, on a molecular basis, the interaction of p53 and anti-p53 antibodies. Previously, as a model system, we developed a measurement device consisting of p53 protein (human wild type), characterized by mass spectroscopy and immobilized at various concentrations on a glass slide. The device is designed as a control to be used with immunohistochemical (IHC) assays that incorporate commercially available anti-p53 antibodies and probes. In the current study, p53 protein is covalently immobilized on a silicon dioxide-coated quartz crystal and the resonance frequency shift is followed in-situ. The functionalized sensor is then incubated with the anti-p53 antibody, which provides a direct gravimetric measure of the antibody-antigen binding. This previously described method allows the comparison of the surface immobilized protein concentrations with estimates obtained by fluorescence measurement. The p53 functionalized QCM system offers an independent measure of surface immobilized protein concentration and is essential in development of our IHC calibration prototypes. These results provide a benchmark for comparing antibody systems that may be used in developing other molecular diagnostic assays such as immunocytochemical analysis and the detection of biomarker proteins in blood and urine.
Gene Conversion in Angiosperm Genomes with an Emphasis on Genes Duplicated by Polyploidization
Xi-Yin Wang,Andrew H. Paterson
Genes , 2011, DOI: 10.3390/genes2010001
Abstract: Angiosperm genomes differ from those of mammals by extensive and recursive polyploidizations. The resulting gene duplication provides opportunities both for genetic innovation, and for concerted evolution. Though most genes may escape conversion by their homologs, concerted evolution of duplicated genes can last for millions of years or longer after their origin. Indeed, paralogous genes on two rice chromosomes duplicated an estimated 60–70 million years ago have experienced gene conversion in the past 400,000 years. Gene conversion preserves similarity of paralogous genes, but appears to accelerate their divergence from orthologous genes in other species. The mutagenic nature of recombination coupled with the buffering effect provided by gene redundancy, may facilitate the evolution of novel alleles that confer functional innovations while insulating biological fitness of affected plants. A mixed evolutionary model, characterized by a primary birth-and-death process and occasional homoeologous recombination and gene conversion, may best explain the evolution of multigene families.
Composition of the Putative Prepore Complex of Bacillus thuringiensis Cry1Ab Toxin  [PDF]
Manoj S. Nair, Donald H. Dean
Advances in Biological Chemistry (ABC) , 2015, DOI: 10.4236/abc.2015.54014
Abstract: Prepore formation is hypothesized to be an obligate step in the insertion of Cry1Ab toxin into insect brush border membrane vesicles. We examined the architecture of the putative prepore when isolated using the published protocols [1] [2]. Our results demonstrate that the putative prepore form of Cry1Ab is a combination of receptor proteins attached to the toxin, when purified. The results also suggest that this prepore form as prepared by the methods published is different from other membrane-extracted oligomeric forms of Cry toxins and prepore of other toxins in general. While most other known prepores are composed of multimers of a single protein, the Cry1Ab prepore, as generated, is a protein-receptor complex oligomer and monomers of Cry toxins.
Page 1 /153223
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.