Abstract:
A general framework of constructions of endoscopy correspondences via automorphic integral transforms for classical groups is formulated in terms of the Arthur classification of the discrete spectrum of square-integrable automorphic forms. This suggests a principle, which is called the $(\tau,b)$-theory of automorphic forms of classical groups, to reorganize and extend the series of work of Piatetski-Shapiro, Rallis, Kudla and others on standard $L$-functions of classical groups and theta correspondence.

Abstract:
In this paper we characterize irreducible generic representations of $\SO_{2n+1}(k)$ where $k$ is a $p$-adic field) by means of twisted local gamma factors (the Local Converse Theorem). As applications, we prove that two irreducible generic cuspidal automorphic representations of $\SO_{2n+1}({\Bbb A})$ (where ${\Bbb A}$ is the ring of adeles of a number field) are equivalent if their local components are equivalent at almost all local places (the Rigidity Theorem);and prove the Local Langlands Reciprocity Conjecture for generic supercuspidal representations of $\SO_{2n+1}(k)$.

Abstract:
A family of global integrals representing a product of tensor product (partial) $L$-functions: $ L^S(s,\pi\times\tau_1)L^S(s,\pi\times\tau_2)... L^S(s,\pi\times\tau_r) $ are established in this paper, where $\pi$ is an irreducible cuspidal automorphic representation of a quasi-split classical group of Hermitian type and $\tau_1,...,\tau_r$ are irreducible unitary cuspidal automorphic representations of $\GL_{a_1},...,\GL_{a_r}$, respectively. When $r=1$ and the classical group is an orthogonal group, this was studied by Ginzburg, Piatetski-Shapiro and Rallis in 1997 and when $\pi$ is generic and $\tau_1,...,\tau_r$ are not isomorphic to each other, this is considered by Ginzburg, Rallis and Soudry in 2011. In this paper, we prove that the global integrals are eulerian and finish the explicit calculation of unramified local $L$-factors in general. The remaining local and global theory for this family of global integrals will be considered in our future work.

Abstract:
Fourier coefficients of automorphic representations $\pi$ of $\Sp_{2n}(\BA)$ are attached to unipotent adjoint orbits in $\Sp_{2n}(F)$, where $F$ is a number field and $\BA$ is the ring of adeles of $F$. We prove that for a given $\pi$, all maximal unipotent orbits, which gives nonzero Fourier coefficients of $\pi$ are special, and prove, under a well acceptable assumption, that if $\pi$ is cuspidal, then the stabilizer attached to each of those maximal unipotent orbits is $F$-anisotropic as algebraic group over $F$. These results strengthen, refine and extend the earlier work of Ginzburg, Rallis and Soudry on the subject. As a consequence, we obtain constraints on those maximal unipotent orbits if $F$ is totally imaginary, further applications of which to the discrete spectrum with the Arthur classification will be considered in our future work.

Abstract:
We study the structures of Fourier coefficients of automorphic forms on symplectic groups based on their local and global structures related to Arthur parameters. This is a first step towards the general conjecture on the relation between the structure of Fourier coefficients and Arthur parameters given by the first named author in [J14].

Abstract:
Following the idea of [GJS09] for orthogonal groups, we introduce a new family of period integrals for cuspidal automorphic representations $\sigma$ of unitary groups and investigate their relation with the occurrence of a simple global Arthur parameter $(\chi,b)$ in the global Arthur parameter $\psi_\sigma$ associated to $\sigma$, by the endoscopic classification of Arthur ([Art13], [Mok13], [KMSW14]). The argument uses the theory of theta correspondence. This can be viewed as a part of the $(\chi,b)$-theory outlined in [Jia14] and can be regarded as a refinement of the theory of theta correspondences and poles of certain $L$-functions, which was outlined in [Ral91].

Abstract:
This is a preliminary version. In this paper, we introduce a new family of period integrals attached to irreducible cuspidal automorphic representations $\pi$ of symplectic groups $\mathrm{Sp}_{2n}(\mathbb{A})$, which is expected to characterize the right-most pole of the $L$-function $L(s,\pi\times\chi)$ for some order-two character $\chi$ of $F^\times\backslash\mathbb{A}^\times$, and hence to detect the occurrence of a simple global Arthur parameter $(\chi,b)$ in the global Arthur parameter $\psi$ attached to $\pi$.

Abstract:
In [J14], a conjecture was proposed on a relation between the global Arthur parameters and the structure of Fourier coefficients of the automorphic representations in the corresponding global Arthur packets. In this paper, we discuss the recent progress on this conjecture and certain problems which lead to better understanding of Fourier coefficients of automorphic forms. At the end, we extend a useful technical lemma to a few versions, which are more convenient for future applications.

Abstract:
In the theory of automorphic descents developed by Ginzburg, Rallis and Soudry in [GRS11], the structure of Fourier coefficients of the residual representations of certain special Eisenstein series plays important roles. Started from [JLZ13], the authors are looking for more general residual representations, which may yield more general theory of automorphic descents. In this paper, we investigate the structure of Fourier coefficients of certain residual representations of symplectic groups, corresponding to certain interesting families of global Arthur parameters. On one hand, the results partially confirm a conjecture proposed by the first named author in [J14] on relations between the global Arthur parameters and the structure of Fourier coefficients of the automorphic representations in the corresponding global Arthur packets. On the other hand, the results of this paper can be regarded as a first step towards more general automorphic descents for symplectic groups, which will be considered in our future work.

Abstract:
The endoscopic classification via the stable trace formula comparison provides certain character relations between irreducible cuspidal automorphic representations of classical groups and their global Arthur parameters, which are certain automorphic representations of general linear groups. It is a question of J. Arthur and W. Schmid that asks: How to construct concrete modules for irreducible cuspidal automorphic representations of classical groups in term of their global Arthur parameters? In this paper, we formulate a general construction of concrete modules, using Bessel periods, for cuspidal automorphic representations of classical groups with generic global Arthur parameters. Then we establish the theory for orthogonal and unitary groups, based on certain well expected conjectures. Among the consequences of the theory in this paper is the global Gan-Gross-Prasad conjecture for those classical groups.