oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 6 )

2019 ( 230 )

2018 ( 282 )

2017 ( 304 )

Custom range...

Search Results: 1 - 10 of 229501 matches for " Deborah R. Winter equal contributor "
All listed articles are free for downloading (OA Articles)
Page 1 /229501
Display every page Item
Transcription Initiation Patterns Indicate Divergent Strategies for Gene Regulation at the Chromatin Level
Elizabeth A. Rach equal contributor,Deborah R. Winter equal contributor,Ashlee M. Benjamin,David L. Corcoran,Ting Ni,Jun Zhu,Uwe Ohler
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1001274
Abstract: The application of deep sequencing to map 5′ capped transcripts has confirmed the existence of at least two distinct promoter classes in metazoans: “focused” promoters with transcription start sites (TSSs) that occur in a narrowly defined genomic span and “dispersed” promoters with TSSs that are spread over a larger window. Previous studies have explored the presence of genomic features, such as CpG islands and sequence motifs, in these promoter classes, but virtually no studies have directly investigated the relationship with chromatin features. Here, we show that promoter classes are significantly differentiated by nucleosome organization and chromatin structure. Dispersed promoters display higher associations with well-positioned nucleosomes downstream of the TSS and a more clearly defined nucleosome free region upstream, while focused promoters have a less organized nucleosome structure, yet higher presence of RNA polymerase II. These differences extend to histone variants (H2A.Z) and marks (H3K4 methylation), as well as insulator binding (such as CTCF), independent of the expression levels of affected genes. Notably, differences are conserved across mammals and flies, and they provide for a clearer separation of promoter architectures than the presence and absence of CpG islands or the occurrence of stalled RNA polymerase. Computational models support the stronger contribution of chromatin features to the definition of dispersed promoters compared to focused start sites. Our results show that promoter classes defined from 5′ capped transcripts not only reflect differences in the initiation process at the core promoter but also are indicative of divergent transcriptional programs established within gene-proximal nucleosome organization.
Indirect Evolution of Hybrid Lethality Due to Linkage with Selected Locus in Mimulus guttatus
Kevin M. Wright equal contributor ,Deborah Lloyd equal contributor,David B. Lowry,Mark R. Macnair,John H. Willis
PLOS Biology , 2013, DOI: 10.1371/journal.pbio.1001497
Abstract: Most species are superbly and intricately adapted to the environments in which they live. Adaptive evolution by natural selection is the primary force shaping biological diversity. Differences between closely related species in ecologically selected characters such as habitat preference, reproductive timing, courtship behavior, or pollinator attraction may prevent interbreeding in nature, causing reproductive isolation. But does ecological adaptation cause reproductive incompatibilities such as hybrid sterility or lethality? Although several genes causing hybrid incompatibilities have been identified, there is intense debate over whether the genes that contribute to ecological adaptations also cause hybrid incompatibilities. Thirty years ago, a genetic study of local adaptation to copper mine soils in the wildflower Mimulus guttatus identified a locus that appeared to cause copper tolerance and hybrid lethality in crosses to other populations. But do copper tolerance and hybrid lethality have the same molecular genetic basis? Here we show, using high-resolution genome mapping, that copper tolerance and hybrid lethality are not caused by the same gene but are in fact separately controlled by two tightly linked loci. We further show that selection on the copper tolerance locus indirectly caused the hybrid incompatibility allele to go to high frequency in the copper mine population because of hitchhiking. Our results provide a new twist on Darwin's original supposition that hybrid incompatibilities evolve as an incidental by-product of ordinary adaptation to the environment.
The Single-Nucleotide Resolution Transcriptome of Pseudomonas aeruginosa Grown in Body Temperature
Omri Wurtzel equal contributor,Deborah R. Yoder-Himes equal contributor,Kook Han equal contributor,Ajai A. Dandekar,Sarit Edelheit,E. Peter Greenberg,Rotem Sorek ? ,Stephen Lory ?
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002945
Abstract: One of the hallmarks of opportunistic pathogens is their ability to adjust and respond to a wide range of environmental and host-associated conditions. The human pathogen Pseudomonas aeruginosa has an ability to thrive in a variety of hosts and cause a range of acute and chronic infections in individuals with impaired host defenses or cystic fibrosis. Here we report an in-depth transcriptional profiling of this organism when grown at host-related temperatures. Using RNA-seq of samples from P. aeruginosa grown at 28°C and 37°C we detected genes preferentially expressed at the body temperature of mammalian hosts, suggesting that they play a role during infection. These temperature-induced genes included the type III secretion system (T3SS) genes and effectors, as well as the genes responsible for phenazines biosynthesis. Using genome-wide transcription start site (TSS) mapping by RNA-seq we were able to accurately define the promoters and cis-acting RNA elements of many genes, and uncovered new genes and previously unrecognized non-coding RNAs directly controlled by the LasR quorum sensing regulator. Overall we identified 165 small RNAs and over 380 cis-antisense RNAs, some of which predicted to perform regulatory functions, and found that non-coding RNAs are preferentially localized in pathogenicity islands and horizontally transferred regions. Our work identifies regulatory features of P. aeruginosa genes whose products play a role in environmental adaption during infection and provides a reference transcriptional landscape for this pathogen.
Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development
Seung-Joo Lee equal contributor,James B. McLachlan equal contributor,Jonathan R. Kurtz,Danhua Fan,Sebastian E. Winter,Andreas J. Baumler,Marc K. Jenkins,Stephen J. McSorley
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002499
Abstract: Pathogens can substantially alter gene expression within an infected host depending on metabolic or virulence requirements in different tissues, however, the effect of these alterations on host immunity are unclear. Here we visualized multiple CD4 T cell responses to temporally expressed proteins in Salmonella-infected mice. Flagellin-specific CD4 T cells expanded and contracted early, differentiated into Th1 and Th17 lineages, and were enriched in mucosal tissues after oral infection. In contrast, CD4 T cells responding to Salmonella Type-III Secretion System (TTSS) effectors steadily accumulated until bacterial clearance was achieved, primarily differentiated into Th1 cells, and were predominantly detected in systemic tissues. Thus, pathogen regulation of antigen expression plays a major role in orchestrating the expansion, differentiation, and location of antigen-specific CD4 T cells in vivo.
Differential Expression of Chemokine and Matrix Re-Modelling Genes Is Associated with Contrasting Schistosome-Induced Hepatopathology in Murine Models
Carly R. Perry equal contributor,Melissa L. Burke equal contributor,Deborah J. Stenzel,Donald P. McManus,Grant A. Ramm,Geoffrey N. Gobert
PLOS Neglected Tropical Diseases , 2011, DOI: 10.1371/journal.pntd.0001178
Abstract: The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis.
The Vi Capsular Polysaccharide Enables Salmonella enterica Serovar Typhi to Evade Microbe-Guided Neutrophil Chemotaxis
Tamding Wangdi,Cheng-Yuk Lee,Alanna M. Spees,Chenzhou Yu,Dawn D. Kingsbury,Sebastian E. Winter,Christine J. Hastey,R. Paul Wilson,Volkmar Heinrich equal contributor,Andreas J. B?umler equal contributor
PLOS Pathogens , 2014, DOI: doi/10.1371/journal.ppat.1004306
Abstract: Salmonella enterica serovar Typhi (S. Typhi) causes typhoid fever, a disseminated infection, while the closely related pathogen S. enterica serovar Typhimurium (S. Typhimurium) is associated with a localized gastroenteritis in humans. Here we investigated whether both pathogens differ in the chemotactic response they induce in neutrophils using a single-cell experimental approach. Surprisingly, neutrophils extended chemotactic pseudopodia toward Escherichia coli and S. Typhimurium, but not toward S. Typhi. Bacterial-guided chemotaxis was dependent on the presence of complement component 5a (C5a) and C5a receptor (C5aR). Deletion of S. Typhi capsule biosynthesis genes markedly enhanced the chemotactic response of neutrophils in vitro. Furthermore, deletion of capsule biosynthesis genes heightened the association of S. Typhi with neutrophils in vivo through a C5aR-dependent mechanism. Collectively, these data suggest that expression of the virulence-associated (Vi) capsular polysaccharide of S. Typhi obstructs bacterial-guided neutrophil chemotaxis.
Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth
Sarah A. Stanley equal contributor,Amy K. Barczak equal contributor,Melanie R. Silvis,Samantha S. Luo,Kimberly Sogi,Martha Vokes,Mark-Anthony Bray,Anne E. Carpenter,Christopher B. Moore,Noman Siddiqi,Eric J. Rubin,Deborah T. Hung
PLOS Pathogens , 2014, DOI: doi/10.1371/journal.ppat.1003946
Abstract: Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited.
Analysis of Germline GLI1 Variation Implicates Hedgehog Signalling in the Regulation of Intestinal Inflammatory Pathways
Charlie W Lees equal contributor ,William J Zacharias equal contributor,Mark Tremelling,Colin L Noble,Elaine R Nimmo,Albert Tenesa,Jennine Cornelius,Leif Torkvist,John Kao,Susan Farrington,Hazel E Drummond,Gwo-Tzer Ho,Ian D. R Arnott,Henry D Appelman,Lauri Diehl,Harry Campbell,Malcolm G Dunlop,Miles Parkes,Sarah E. M Howie,Deborah L Gumucio ? ,Jack Satsangi ?
PLOS Medicine , 2008, DOI: 10.1371/journal.pmed.0050239
Abstract: Background Ulcerative colitis (UC) and Crohn's disease (CD) are polygenic chronic inflammatory bowel diseases (IBD) of high prevalence that are associated with considerable morbidity. The hedgehog (HH) signalling pathway, which includes the transcription factor glioma-associated oncogene homolog 1 (GLI1), plays vital roles in gastrointestinal tract development, homeostasis, and malignancy. We identified a germline variation in GLI1 (within the IBD2 linkage region, 12q13) in patients with IBD. Since this IBD-associated variant encodes a GLI1 protein with reduced function and our expression studies demonstrated down-regulation of the HH response in IBD, we tested whether mice with reduced Gli1 activity demonstrate increased susceptibility to chemically induced colitis. Methods and Findings Using a gene-wide haplotype-tagging approach, germline GLI1 variation was examined in three independent populations of IBD patients and healthy controls from Northern Europe (Scotland, England, and Sweden) totalling over 5,000 individuals. On log-likelihood analysis, GLI1 was associated with IBD, predominantly UC, in Scotland and England (p < 0.0001). A nonsynonymous SNP (rs2228226C→G), in exon 12 of GLI1 (Q1100E) was strongly implicated, with pooled odds ratio of 1.194 (confidence interval = 1.09–1.31, p = 0.0002). GLI1 variants were tested in vitro for transcriptional activity in luciferase assays. Q1100E falls within a conserved motif near the C terminus of GLI1; the variant GLI protein exhibited reduced transactivation function in vitro. In complementary expression studies, we noted the colonic HH response, including GLI1, patched (PTCH), and hedgehog-interacting protein (HHIP), to be down-regulated in patients with UC. Finally, Gli1+/lacZ mice were tested for susceptibility to dextran sodium sulphate (DSS)-induced colitis. Clinical response, histology, and expression of inflammatory cytokines and chemokines were recorded. Gli1+/lacZ mice rapidly developed severe intestinal inflammation, with considerable morbidity and mortality compared with wild type. Local myeloid cells were shown to be direct targets of HH signals and cytokine expression studies revealed robust up-regulation of IL-12, IL-17, and IL-23 in this model. Conclusions HH signalling through GLI1 is required for appropriate modulation of the intestinal response to acute inflammatory challenge. Reduced GLI1 function predisposes to a heightened myeloid response to inflammatory stimuli, potentially leading to IBD.
Identification, Replication, and Functional Fine-Mapping of Expression Quantitative Trait Loci in Primary Human Liver Tissue
Federico Innocenti equal contributor,Gregory M. Cooper equal contributor,Ian B. Stanaway,Eric R. Gamazon,Joshua D. Smith,Snezana Mirkov,Jacqueline Ramirez,Wanqing Liu,Yvonne S. Lin,Cliona Moloney,Shelly Force Aldred,Nathan D. Trinklein,Erin Schuetz,Deborah A. Nickerson,Ken E. Thummel,Mark J. Rieder,Allan E. Rettie,Mark J. Ratain,Nancy J. Cox,Christopher D. Brown
PLOS Genetics , 2011, DOI: 10.1371/journal.pgen.1002078
Abstract: The discovery of expression quantitative trait loci (“eQTLs”) can help to unravel genetic contributions to complex traits. We identified genetic determinants of human liver gene expression variation using two independent collections of primary tissue profiled with Agilent (n = 206) and Illumina (n = 60) expression arrays and Illumina SNP genotyping (550K), and we also incorporated data from a published study (n = 266). We found that ~30% of SNP-expression correlations in one study failed to replicate in either of the others, even at thresholds yielding high reproducibility in simulations, and we quantified numerous factors affecting reproducibility. Our data suggest that drug exposure, clinical descriptors, and unknown factors associated with tissue ascertainment and analysis have substantial effects on gene expression and that controlling for hidden confounding variables significantly increases replication rate. Furthermore, we found that reproducible eQTL SNPs were heavily enriched near gene starts and ends, and subsequently resequenced the promoters and 3′UTRs for 14 genes and tested the identified haplotypes using luciferase assays. For three genes, significant haplotype-specific in vitro functional differences correlated directly with expression levels, suggesting that many bona fide eQTLs result from functional variants that can be mechanistically isolated in a high-throughput fashion. Finally, given our study design, we were able to discover and validate hundreds of liver eQTLs. Many of these relate directly to complex traits for which liver-specific analyses are likely to be relevant, and we identified dozens of potential connections with disease-associated loci. These included previously characterized eQTL contributors to diabetes, drug response, and lipid levels, and they suggest novel candidates such as a role for NOD2 expression in leprosy risk and C2orf43 in prostate cancer. In general, the work presented here will be valuable for future efforts to precisely identify and functionally characterize genetic contributions to a variety of complex traits.
Differences in Gastric Carcinoma Microenvironment Stratify According to EBV Infection Intensity: Implications for Possible Immune Adjuvant Therapy
Michael J. Strong equal contributor,Guorong Xu equal contributor,Joseph Coco,Carl Baribault,Dass S. Vinay,Michelle R. Lacey,Amy L. Strong,Teresa A. Lehman,Michael B. Seddon,Zhen Lin,Monica Concha,Melody Baddoo,MaryBeth Ferris,Kenneth F. Swan,Deborah E. Sullivan,Matthew E. Burow,Christopher M. Taylor ,Erik K. Flemington
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003341
Abstract: Epstein-Barr virus (EBV) is associated with roughly 10% of gastric carcinomas worldwide (EBVaGC). Although previous investigations provide a strong link between EBV and gastric carcinomas, these studies were performed using selected EBV gene probes. Using a cohort of gastric carcinoma RNA-seq data sets from The Cancer Genome Atlas (TCGA), we performed a quantitative and global assessment of EBV gene expression in gastric carcinomas and assessed EBV associated cellular pathway alterations. EBV transcripts were detected in 17% of samples but these samples varied significantly in EBV coverage depth. In four samples with the highest EBV coverage (hiEBVaGC – high EBV associated gastric carcinoma), transcripts from the BamHI A region comprised the majority of EBV reads. Expression of LMP2, and to a lesser extent, LMP1 were also observed as was evidence of abortive lytic replication. Analysis of cellular gene expression indicated significant immune cell infiltration and a predominant IFNG response in samples expressing high levels of EBV transcripts relative to samples expressing low or no EBV transcripts. Despite the apparent immune cell infiltration, high levels of the cytotoxic T-cell (CTL) and natural killer (NK) cell inhibitor, IDO1, was observed in the hiEBVaGCs samples suggesting an active tolerance inducing pathway in this subgroup. These results were confirmed in a separate cohort of 21 Vietnamese gastric carcinoma samples using qRT-PCR and on tissue samples using in situ hybridization and immunohistochemistry. Lastly, a panel of tumor suppressors and candidate oncogenes were expressed at lower levels in hiEBVaGC versus EBV-low and EBV-negative gastric cancers suggesting the direct regulation of tumor pathways by EBV.
Page 1 /229501
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.