Abstract:
This article studies distributed event-triggered consensus over unreliable communication channels. Communication is unreliable in the sense that the broadcast channel from one agent to its neighbors can drop the event-triggered packets of information, where the transmitting agent is unaware that the packet was not received and the receiving agents have no knowledge of the transmitted packet. Additionally, packets that successfully arrive at their destination may suffer from time-varying communication delays. In this paper, we consider directed graphs, and we also relax the consistency on the packet dropouts and the delays. Relaxing consistency means that the delays and dropouts for a packet broadcast by one agent can be different for each receiving node. We show that even under this challenging scenario, agents can reach consensus asymptotically while reducing transmissions of measurements based on the proposed event-triggered consensus protocol. In addition, positive inter-event times are obtained which guarantee that Zeno behavior does not occur.

Abstract:
This paper addresses the active target defense differential game where an Attacker missile pursues a Target aircraft. A Defender missile is fired by the Target's wingman in order to intercept the Attacker before it reaches the aircraft. Thus, a team is formed by the Target and the Defender which cooperate to maximize the distance between the Target aircraft and the point where the Attacker missile is intercepted by the Defender missile, while the Attacker tries to minimize said distance. The results shown here extend previous work. We consider here the case where the Defender is faster than the Attacker. The solution to this differential game provides optimal heading angles for the Target and the Defender team to maximize the terminal separation between Target and Attacker and it also provides the optimal heading angle for the Attacker to minimize the said distance.

Abstract:
Multi-agent systems cooperation to achieve global goals is usually limited by sensing, actuation, and communication issues. At the local level, continuous measurement and actuation is only approximated by the use of digital mechanisms that measure and process information in order to compute and update new control input values at discrete time instants. Interaction with other agents or subsystems takes place, in general, through a digital communication channel with limited bandwidth where transmission of continuous-time signals is not possible. Additionally, communication channels may be subject to other imperfections such as time-varying delays. This paper considers the problem of consensus (or synchronization of state trajectories) of multi-agent systems that are described by general linear dynamics and are connected using undirected graphs. An event-triggered consensus protocol is proposed, where each agent implements discretized and decoupled models of the states of its neighbors. This approach not only avoids the need for continuous communication between agents but also provides a decentralized method for transmission of information in the presence of time-varying communication delays where each agent decides its own broadcasting time instants based only on local information. This method gives more flexibility for scheduling information broadcasting compared to periodic and sampled-data implementations. The use of discretized models by each agent allows for a periodic event-triggered strategy where continuous actuation and continuous measurement of the states are not necessary.

Abstract:
The active target defense differential game is addressed in this paper. In this differential game an Attacker missile pursues a Target aircraft. The aircraft is however aided by a Defender missile launched by, say, the wingman, to intercept the Attacker before it reaches the Target aircraft. Thus, a team is formed by the Target and the Defender which cooperate to maximize the separation between the Target aircraft and the point where the Attacker missile is intercepted by the Defender missile, while the Attacker simultaneously tries to minimize said distance. This paper focuses on characterizing the set of coordinates such that if the Target's initial position belong to this set then its survival is guaranteed if both the Target and the Defender follow their optimal strategies. Such optimal strategies are presented in this paper as well.

Abstract:
An event-triggered control technique for consensus of multi-agent systems with general linear dynamics is presented. This paper extends previous work to consider agents that are connected using directed graphs. Additionally, the approach shown here provides asymptotic consensus with guaranteed positive inter-event time intervals. This event-triggered control method is also used in the case where communication delays are present. For the communication delay case we also show that the agents achieve consensus asymptotically and that, for every agent, the time intervals between consecutive transmissions is lower-bounded by a positive constant.

Abstract:
In this paper, the problem of bridge consensus is presented and solved. Bridge consensus consists of a network of nodes, some of whom are participating and others are non-participating. The objective is for all the agents to reach average consensus of the participating nodes initial values in a distributed and scalable manner. To do this, the nodes must use the network connections of the non-participating nodes, which act as bridges for information and ignore the initial values of the non-participating nodes. The solution to this problem is made by merging the ideas from estimation theory and consensus theory. By considering the participating nodes has having equal information and the non-participating nodes as having no information, the nodes initial values are transformed into information space. Two consensus filters are run in parallel on the information state and information matrix. Conditions ensuring that the product of the inverse information matrix and the information state of each agent reaches average consensus of the participating agents' initial values is given.

Abstract:
This paper proposes a control algorithm for a UAV to circumnavigate an unknown target at a fixed radius when the location information of the UAV is unavailable. By assuming that the UAV has a constant velocity, the control algorithm makes adjustments to the heading angle of the UAV based on range and range rate measurements from the target, which may be corrupted by additive measurement noise. The control algorithm has the added benefit of being globally smooth and bounded. Exploiting the relationship between range rate and bearing angle, we transform the system dynamics from Cartesian coordinate in terms of location and heading to polar coordinate in terms of range and bearing angle. We then formulate the addition of measurement errors as a stochastic differential equation. A recurrence result is established showing that the UAV will reach a neighborhood of the desired orbit in finite time. Some statistical measures of performance are obtained to support the technical analysis.

Abstract:
This paper presents two control algorithms enabling a UAV to circumnavigate an unknown target using range and range rate (i.e., the derivative of range) measurements. Given a prescribed orbit radius, both control algorithms (i) tend to drive the UAV toward the tangent of prescribed orbit when the UAV is outside or on the orbit, and (ii) apply zero control input if the UAV is inside the desired orbit. The algorithms differ in that, the first algorithm is smooth and unsaturated while the second algorithm is non-smooth and saturated. By analyzing properties associated with the bearing angle of the UAV relative to the target and through proper design of Lyapunov functions, it is shown that both algorithms produce the desired orbit for an arbitrary initial state. Three examples are provided as a proof of concept.

Abstract:
The Dubins interval problem aims to find the shortest path of bounded curvature between two targets such that the departure angle from the first target and the arrival angle at the second target are constrained to two respective intervals. We propose a new and a simple algorithm to this problem based on the minimum principle of Pontryagin.

Abstract:
Amh is a single copy gene which is expressed in different ways during mammalian development. Several potential promoter elements have been identified using physiological experimentation and on the basis of interspecific sequence comparison. The role of putative promoter elements in controlling gene expression has been investigated by many workers over the last two decades and here by individually mutating each element. Expression was measured in vitro in cells of Sertoli descent by flowcytometry using EGFP as a reporter gene. Three lines of murine cells were used; pre- and post-pubertal Sertoli and granulosa cells. Differences between the three lines of cells, support the view that differentiation in this in vitro model system is likely to be at the level of available transcription factors at given points in development.