Abstract:
Let $B=\{(B_{t}^{1},..., B_{t}^{d}), t\geq 0\}$ be a $d$-dimensional fractional Brownian motion with Hurst parameter $H$ and let $R_{t}=% \sqrt{(B_{t}^{1})^{2}+... +(B_{t}^{d})^{2}}$ be the fractional Bessel process. It\^{o}'s formula for the fractional Brownian motion leads to the equation $ R_{t}=\sum_{i=1}^{d}\int_{0}^{t}\frac{B_{s}^{i}}{R_{s}}% dB_{s}^{i}+H(d-1)\int_{0}^{t}\frac{s^{2H-1}}{R_{s}}ds . $ In the Brownian motion case ($H=1/2$), $X_{t}=\sum_{i=1}^{d}\int_{0}^{t} frac{B_{s}^{i}}{% R_{s}}dB_{s}^{i}$ is a Brownian motion. In this paper it is shown that $X_{t}$ is \underbar{not} a fractional Brownian motion if $H\not=1/2$. We will study some other properties of this stochastic process as well.

Abstract:
Using fractional calculus we define integrals of the form $% \int_{a}^{b}f(x_{t})dy_{t}$, where $x$ and $y$ are vector-valued H\"{o}lder continuous functions of order $\displaystyle \beta \in (\frac13, \frac12)$ and $f$ is a continuously differentiable function such that $f'$ is $\lambda$-H\"oldr continuous for some $\lambda>\frac1\beta-2$. Under some further smooth conditions on $f$ the integral is a continuous functional of $x$, $y$, and the tensor product $x\otimes y$ with respect to the H\"{o}lder norms. We derive some estimates for these integrals and we solve differential equations driven by the function $y$. We discuss some applications to stochastic integrals and stochastic differential equations.

Abstract:
We study the two-dimensional fractional Brownian motion with Hurst parameter $H>{1/2}$. In particular, we show, using stochastic calculus, that this process admits a skew-product decomposition and deduce from this representation some asymptotic properties of the motion.

Abstract:
In this paper, we prove a central limit theorem for a sequence of iterated Shorohod integrals using the techniques of Malliavin calculus. The convergence is stable, and the limit is a conditionally Gaussian random variable. Some applications to sequences of multiple stochastic integrals, and renormalized weighted Hermite variations of the fractional Brownian motion are discussed.

Abstract:
We study the smoothness of the density of a semilinear heat equation with multiplicative spacetime white noise. Using Malliavin calculus, we reduce the problem to a question of negative moments of solutions of a linear heat equation with multiplicative white noise. Then we settle this question by proving that solutions to the linear equation have negative moments of all orders.

Abstract:
We study a least squares estimator $\hat {\theta}_T$ for the Ornstein-Uhlenbeck process, $dX_t=\theta X_t dt+\sigma dB^H_t$, driven by fractional Brownian motion $B^H$ with Hurst parameter $H\ge \frac12$. We prove the strong consistence of $\hat {\theta}_T$ (the almost surely convergence of $\hat {\theta}_T$ to the true parameter ${% \theta}$). We also obtain the rate of this convergence when $1/2\le H<3/4$, applying a central limit theorem for multiple Wiener integrals. This least squares estimator can be used to study other more simulation friendly estimators such as the estimator $\tilde \theta_T$ defined by (4.1).

Abstract:
The purpose of this note is to prove a central limit theorem for the $L^3$-modulus of continuity of the Brownian local time using techniques of stochastic analysis. The main ingredients of the proof are an asymptotic version of Knight's theorem and the Clark-Ocone formula for the $L^3$-modulus of the Brownian local time.

Abstract:
We construct an iterated stochastic integral with fractional Brownian motion with H > 1/2. The first integrand is a deterministic function, and each successive integral is with respect to an independent fBm. We show that this symmetric stochastic integral is equal to the Malliavin divergence integral. By a version of the Fourth Moment theorem of Nualart and Peccati, we show that a family of such integrals converges in distribution to a scaled Brownian motion. An application is an approximation to the windings for a planar fBm, previously studied by Baudoin and Nualart.

Abstract:
We prove a central limit theorem for functionals of two independent $d$-dimensional fractional Brownian motions with the same Hurst index $H$ in $(\frac{2}{d+1},\frac{2}{d})$ using the method of moments.