oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 1 )

2019 ( 175 )

2018 ( 245 )

2017 ( 247 )

Custom range...

Search Results: 1 - 10 of 191414 matches for " D. Veron "
All listed articles are free for downloading (OA Articles)
Page 1 /191414
Display every page Item
Sans-papiers : d’un quotidien tactique à l’action collective
Daniel Veron
Variations : Revue Internationale de Théorie Critique , 2012,
Abstract: Tu sais le combat, il commence, dès que tu es vivant là. Dès que tu es mis dans le monde, c’est un combat. Que c’est en Afrique, en Europe, c’est un combat à mener. Bakari, Oublié de St-Paul Le choix du petit peut s’entendre de deux manières. La première renvoie au choix de l’analyste produisant un discours sur le social : faire le choix du petit c’est choisir son camp. Dans le champ de la sociologie, c’est ranger au placard ses velléités de surplomb et prendre le point de vue de ce...
La haine, cette (violente) muse
Daniel Veron
Variations : Revue Internationale de Théorie Critique , 2012,
Abstract: La haine est sainte. Elle est l’indignation des c urs forts et puissants, le dédain militant de ceux que fachent la médiocrité et la sottise. Ha r c’est aimer, c’est sentir son ame chaude et généreuse, c’est vivre largement du mépris des choses honteuses et bêtes. La haine soulage, la haine fait justice, la haine grandit. émile Zola, Mes haines, 1866Une "sainte" haine ? Une haine positive, performative, s rement. Une haine digne. C’est de celle-ci que je voudrais parler ici. De quoi s’agit...
Generalized boundary value problems for nonlinear elliptic equations
Laurent Veron
Electronic Journal of Differential Equations , 2001,
Abstract: We give here an overview of some recent developments in the study of the description of all the positive solutions of {equation} -Delta u+|u|^{q-1}u=0 label{NLE} end{equation} in a domain $Omega$ where $q>1$.
Singular p-harmonic functions and related quasilinear equations on manifolds
Laurent Veron
Electronic Journal of Differential Equations , 2002,
Abstract: We give here an overview of some recent developments in the study of the description of singular solutions of $$ -abla.(|abla u|^{p-2}abla u) +varepsilon |u|^{q-1}u=0 %label{NLE} $$ in $mathbb{R}^Nsetminus {0}$, where $p>1$, $varepsilon in {0,1,-1}$ and $qgeq p-1$.
A note on maximal solutions of nonlinear parabolic equations with absorption
Laurent Veron
Mathematics , 2009,
Abstract: If $\Omega$ is a bounded domain in $\mathbb R^N$ and $f$ a continuous increasing function satisfying a super linear growth condition at infinity, we study the existence and uniqueness of solutions for the problem (P): $\partial_tu-\Delta u+f(u)=0$ in $Q_\infty^\Omega:=\Omega\times (0,\infty)$, $u=\infty$ on the parabolic boundary $\partial_{p}Q$. We prove that in most cases, the existence and uniqueness is reduced to the same property for the associated stationary equation in $\Omega$.
On the equation $-Δu+e^{u}-1=0$ with measures as boundary data
Laurent Veron
Mathematics , 2011,
Abstract: If $\Omega$ is a bounded domain in $\mathbb R^N$, we study conditions on a Radon measure $\mu$ on $\partial\Omega$ for solving the equation $-\Delta u+e^{u}-1=0$ in $\Omega$ with $u=\mu$ on $\partial\Omega$. The conditions are expressed in terms of Orlicz capacities.
A note on the equation $-Δu+e^{u}-1=0$
Laurent Veron
Mathematics , 2011,
Abstract: If $\Omega$ is a bounded domain in $\mathbb R^N$, we study conditions on a Radon measure $\mu$ on $\partial\Omega$ for solving the equation $-\Delta u+e^{u}-1=0$ in $\Omega$ with $u=\mu$ on $\partial\Omega$. The conditions are expressed in terms of nonlinear capacities.
Existence and stability of solutions of general semilinear elliptic equations with measure data
Laurent Veron
Mathematics , 2012,
Abstract: We study existence and stability for solutions of $Lu+g(x; u) = \omega$ in the closure of open set $\Omega$ where L is a second order elliptic operator, $g$ a Caratheodory function and $\omega$ a measure in $\bar\Omega$. We present a uni ed theory of the Dirichlet problem and the Poisson equation. We prove the stability of the problem with respect to weak convergence of the data.
Elliptic Equations Involving Meausres
Laurent Veron
Mathematics , 2008,
Abstract: We present the moste recent results dealing with the theory of semilinear elliptic equations with measures data
Boundary Value Problems with Measures for Elliptic Equations with Singular Potentials
Laurent Veron
Mathematics , 2010,
Abstract: We study the boundary value problem with Radon measures for nonnegative solutions of $-\Delta u+Vu=0$ in a bounded smooth domain $\Gw$, when $V$ is a locally bounded nonnegative function. Introducing some specific capacity, we give sufficient conditions on a Radon measure $\gm$ on $\prt\Gw$ so that the problem can be solved. We study the reduced measure associated to this equation as well as the boundary trace of positive solutions.
Page 1 /191414
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.