Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 2 )

2019 ( 188 )

2018 ( 245 )

2017 ( 248 )

Custom range...

Search Results: 1 - 10 of 191564 matches for " D. McKee "
All listed articles are free for downloading (OA Articles)
Page 1 /191564
Display every page Item
The Cohesion Protein SOLO Associates with SMC1 and Is Required for Synapsis, Recombination, Homolog Bias and Cohesion and Pairing of Centromeres in Drosophila Meiosis
Rihui Yan,Bruce D. McKee
PLOS Genetics , 2013, DOI: 10.1371/journal.pgen.1003637
Abstract: Cohesion between sister chromatids is mediated by cohesin and is essential for proper meiotic segregation of both sister chromatids and homologs. solo encodes a Drosophila meiosis-specific cohesion protein with no apparent sequence homology to cohesins that is required in male meiosis for centromere cohesion, proper orientation of sister centromeres and centromere enrichment of the cohesin subunit SMC1. In this study, we show that solo is involved in multiple aspects of meiosis in female Drosophila. Null mutations in solo caused the following phenotypes: 1) high frequencies of homolog and sister chromatid nondisjunction (NDJ) and sharply reduced frequencies of homolog exchange; 2) reduced transmission of a ring-X chromosome, an indicator of elevated frequencies of sister chromatid exchange (SCE); 3) premature loss of centromere pairing and cohesion during prophase I, as indicated by elevated foci counts of the centromere protein CID; 4) instability of the lateral elements (LE)s and central regions of synaptonemal complexes (SCs), as indicated by fragmented and spotty staining of the chromosome core/LE component SMC1 and the transverse filament protein C(3)G, respectively, at all stages of pachytene. SOLO and SMC1 are both enriched on centromeres throughout prophase I, co-align along the lateral elements of SCs and reciprocally co-immunoprecipitate from ovarian protein extracts. Our studies demonstrate that SOLO is closely associated with meiotic cohesin and required both for enrichment of cohesin on centromeres and stable assembly of cohesin into chromosome cores. These events underlie and are required for stable cohesion of centromeres, synapsis of homologous chromosomes, and a recombination mechanism that suppresses SCE to preferentially generate homolog crossovers (homolog bias). We propose that SOLO is a subunit of a specialized meiotic cohesin complex that mediates both centromeric and axial arm cohesion and promotes homolog bias as a component of chromosome cores.
Transport of warm Upper Circumpolar Deep Water onto the western Antarctic Peninsula continental shelf
D. G. Martinson,D. C. McKee
Ocean Science (OS) & Discussions (OSD) , 2012, DOI: 10.5194/os-8-433-2012
Abstract: Five thermistor moorings were placed on the continental shelf of the western Antarctic Peninsula (between 2007 and 2010) in an effort to identify the mechanism(s) responsible for delivering warm Upper Circumpolar Deep Water (UCDW) onto the broad continental shelf from the Antarctic Circumpolar Current (ACC) flowing over the adjacent continental slope. Historically, four mechanisms have been suggested: (1) eddies shed from the ACC, (2) flow into the cross-shelf-cutting canyons with overflow onto the nominal shelf, (3) general upwelling, and (4) episodic advective diversions of the ACC onto the shelf. The mooring array showed that for the years of deployment, the dominant mechanism is eddies; upwelling may also contribute but to an unknown extent. Mechanism 2 played no role, though the canyons have been shown previously to channel UCDW across the shelf into Marguerite Bay. Mechanism 4 played no role independently, though eddies may be advected within a greater intrusion of the background flow.
A decision tree model to estimate the value of information provided by a groundwater quality monitoring network
A. Khader,D. Rosenberg,M. McKee
Hydrology and Earth System Sciences Discussions , 2012, DOI: 10.5194/hessd-9-13805-2012
Abstract: Nitrate pollution poses a health risk for infants whose freshwater drinking source is groundwater. This risk creates a need to design an effective groundwater monitoring network, acquire information on groundwater conditions, and use acquired information to inform management. These actions require time, money, and effort. This paper presents a method to estimate the value of information (VOI) provided by a groundwater quality monitoring network located in an aquifer whose water poses a spatially heterogeneous and uncertain health risk. A decision tree model describes the structure of the decision alternatives facing the decision maker and the expected outcomes from these alternatives. The alternatives include: (i) ignore the health risk of nitrate contaminated water, (ii) switch to alternative water sources such as bottled water, or (iii) implement a previously designed groundwater quality monitoring network that takes into account uncertainties in aquifer properties, pollution transport processes, and climate (Khader and McKee, 2012). The VOI is estimated as the difference between the expected costs of implementing the monitoring network and the lowest-cost uninformed alternative. We illustrate the method for the Eocene Aquifer, West Bank, Palestine where methemoglobinemia is the main health problem associated with the principal pollutant nitrate. The expected cost of each alternative is estimated as the weighted sum of the costs and probabilities (likelihoods) associated with the uncertain outcomes resulting from the alternative. Uncertain outcomes include actual nitrate concentrations in the aquifer, concentrations reported by the monitoring system, whether people abide by manager recommendations to use/not-use aquifer water, and whether people get sick from drinking contaminated water. Outcome costs include healthcare for methemoglobinemia, purchase of bottled water, and installation and maintenance of the groundwater monitoring system. At current methemoglobinemia and bottled water costs of 150 $/person and 0.6 $/baby/day, the decision tree results show that the expected cost of establishing the proposed groundwater quality monitoring network exceeds the expected costs of the uninformed alternatives and there is not value to the information the monitoring system provides. However, the monitoring system will be preferred to ignoring the health risk or using alternative sources if the methemoglobinemia cost rises to 300 $/person or the bottled water cost increases to 2.3 $/baby/day. Similarly, the monitoring system has value if the system can more ac
Management and Complications of Humeral Shaft Fractures
Andrew Van Houwelingen,Michael D McKee
University of Toronto Medical Journal , 2004, DOI: 10.5015/utmj.v81i2.708
A. Parravano,C. F. McKee,D. Hollenbach
Revista mexicana de astronomía y astrofísica , 2009,
Abstract: In this talk we present a review of the observational difficulties for the determination of the Initial Mass Function (IMF) and make a summary of the observational data that can be used to constrain the IMF. We also show how well the proposed e ective IMF and other popular IMFs t some of these constraints. In this short contribution we point out a series of e ects that must be taken into account to recover the high mass IMF from the observed Present Day Mass Function (PDMF).
The Expulsion of Stellar Envelopes in Core-Collapse Supernovae
Christopher D. Matzner,Christopher F. McKee
Physics , 1998, DOI: 10.1086/306571
Abstract: We examine the relation between presupernova stellar structure and the distribution of ejecta in core-collapse supernovae, assuming adiabatic, spherically symmetric flow. We develop a simple yet accurate formula for the blastwave shock velocity, and demonstrate that the entire final density distribution can be approximated with simple models for the final pressure distribution, along with the approximate shock-deposited entropy, in a way that matches the results of simulations. We find that the distribution of density in a star's ejecta depends on whether its outer envelope is radiative or convective, and if convective, on the composition structure of the star; simple approximate forms are presented for red and blue supergiant ejecta. Our models are most accurate for the high-velocity ejecta from the periphery of a star, where the shock dynamics are predictable. We present formulae for the final density distribution of this material, for both radiative and efficiently convective envelopes. These formulae limit to the well-known planar, self-similar solutions for mass shells approaching the stellar surface. But, the assumption of adiabatic flow fails at low optical depth, so this planar limit need not be attained. Formulae are given for the observable properties of the X-ray burst accompanying shock emergence, and their dependence on the parameters of the explosion. Motivated by the relativistic expansion recently inferred by Kulkarni et al. (1998) for the synchrotron shell around SN1998bw, we estimate the criterion for relativistic mass ejection and the rest mass of relativistic ejecta.
Bipolar molecular outflows driven by hydromagnetic protostellar winds
Christopher D. Matzner,Christopher F. McKee
Physics , 1999, DOI: 10.1086/312376
Abstract: We demonstrate that magnetically-collimated protostellar winds will sweep ambient material into thin, radiative, momentum-conserving shells whose features reproduce those commonly observed in bipolar molecular outflows. We find the typical position-velocity and mass-velocity relations to occur in outflows in a wide variety of ambient density distributions, regardless of the time histories of their driving winds.
Efficiencies of Low-Mass Star and Star Cluster Formation
Christopher D. Matzner,Christopher F. McKee
Physics , 2000, DOI: 10.1086/317785
Abstract: Using a quantitative model for bipolar outflows driven by hydromagnetic protostellar winds, we calculate the efficiency of star formation assuming that available gas is either converted into stars or ejected in outflows. We estimate the efficiency of a single star formation event in a protostellar core, finding 25%-70% for cores with various possible degrees of flattening. The core mass function and the stellar initial mass function have similar slopes, because the efficiency is not sensitive to its parameters. We then consider the disruption of gas from a dense molecular clump in which a cluster of young stars is being born. In both cases, we present analytical formulae for the efficiencies that compare favorably against observations and, for clusters, against numerical simulations. We predict efficiencies in the range 30%-50% for the regions that form clusters of low-mass stars. In our model, star formation and gas dispersal happen concurrently. We neglect the destructive effects of massive stars: our results are therefore upper limits to the efficiency in regions more massive than about 3000 Msun.
Charting the Course for Sustainable Small Island Tourist Development  [PDF]
Teresa L. McKee
Journal of Environmental Protection (JEP) , 2013, DOI: 10.4236/jep.2013.43030

This article, Charting the Course for Sustainable Small Island Tourist Development, addresses sustainability criteria for small island tourist development drawing on the history of development in the last decade in the Bocas del Toro archipelago of the Republic of Panama in the Caribbean Sea near the border of Costa Rica. Tax deferments for the development of vacation and resort properties spurred a boom in this island locale since the late 1980’s. Tourist Law 8 of the Panamanian constitution is referenced. Sustainability criteria of water supply and availability are suggested and outer island projects are discussed. Lessons are outlined and recommendations are made for permit qualifications that promote sustainable small island tourist development.

Spatio-Temporal Prediction of Root Zone Soil Moisture Using Multivariate Relevance Vector Machines  [PDF]
Bushra Zaman, Mac McKee
Open Journal of Modern Hydrology (OJMH) , 2014, DOI: 10.4236/ojmh.2014.43007
Root zone soil moisture at one and two meter depths are forecasted four days into the future. In this article, we propose a new multivariate output prediction approach to root zone soil moisture assessment using learning machine models. These models are known for their robustness, efficiency, and sparseness; they provide a statistically sound approach to solving the inverse problem and thus to building statistical models. The multivariate relevance vector machine (MVRVM) is used to build a model that forecasts soil moisture states based upon current soil moisture and soil temperature conditions. The methodology combines the data at different depths from 5 cm to 50 cm, the largest of which corresponds to the depth at which the soil moisture sensors are generally operational, to produce soil moisture predictions at larger depths. The MVRVM test results for soil moisture predictions at 1 m and 2 m depth on the 4th day are excellent with RMSE = 0.0131 m3/m3 for 1 m; and RMSE = 0.0015 m3/m3 for 2 m forecasted values. The statistics of predictions for 4th day (CoE = 0.87 for 1 m and CoE = 0.96 for 2 m) indicate good model generalization capability and computations show good agreement with actual measurements with R2 = 0.88 and R2 = 0.97 for 1 m and 2 m depths, respectively. The MVRVM produces good results for all four days. Bootstrapping is used to check over/under-fitting and uncertainty in model estimates.
Page 1 /191564
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.