Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 350 )

2018 ( 519 )

2017 ( 493 )

2016 ( 670 )

Custom range...

Search Results: 1 - 10 of 326638 matches for " D. E. Read "
All listed articles are free for downloading (OA Articles)
Page 1 /326638
Display every page Item
Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films
J. S. Parker,D. E. Read,A. Kumar,P. Xiong
Physics , 2006, DOI: 10.1209/epl/i2006-10198-1
Abstract: Superconducting quantum phase transitions tuned by disorder (d), paramagnetic impurity (MI) and perpendicular magnetic field (B) have been studied in homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is characterized by progressive suppression of the critical temperature to zero and a continuous transition to a weakly insulating normal state with increasing MI density. In all important aspects, the d-tuned transition closely resembles the MI-tuned transition and both appear to be fermionic in nature. The B-tuned transition is qualitatively different and probably bosonic. In the critical region it exhibits transport behavior that suggests a B-induced mesoscale phase separation and presence of Cooper pairing in the insulating state.
Importance of MAP Kinases during Protoperithecial Morphogenesis in Neurospora crassa
Alexander Lichius, Kathryn M. Lord, Chris E. Jeffree, Radek Oborny, Patid Boonyarungsrit, Nick D. Read
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0042565
Abstract: In order to produce multicellular structures filamentous fungi combine various morphogenetic programs that are fundamentally different from those used by plants and animals. The perithecium, the female sexual fruitbody of Neurospora crassa, differentiates from the vegetative mycelium in distinct morphological stages, and represents one of the more complex multicellular structures produced by fungi. In this study we defined the stages of protoperithecial morphogenesis in the N. crassa wild type in greater detail than has previously been described; compared protoperithecial morphogenesis in gene-deletion mutants of all nine mitogen-activated protein (MAP) kinases conserved in N. crassa; confirmed that all three MAP kinase cascades are required for sexual development; and showed that the three different cascades each have distinctly different functions during this process. However, only MAP kinases equivalent to the budding yeast pheromone response and cell wall integrity pathways, but not the osmoregulatory pathway, were essential for vegetative cell fusion. Evidence was obtained for MAP kinase signaling cascades performing roles in extracellular matrix deposition, hyphal adhesion, and envelopment during the construction of fertilizable protoperithecia.
Genotyping of Bacillus cereus Strains by Microarray-Based Resequencing
Michael E. Zwick, Maureen P. Kiley, Andrew C. Stewart, Alfred Mateczun, Timothy D. Read
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0002513
Abstract: The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a “one reaction” genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing.
Comparative Live-Cell Imaging Analyses of SPA-2, BUD-6 and BNI-1 in Neurospora crassa Reveal Novel Features of the Filamentous Fungal Polarisome
Alexander Lichius, Mario E. Yá?ez-Gutiérrez, Nick D. Read, Ernestina Castro-Longoria
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0030372
Abstract: A key multiprotein complex involved in regulating the actin cytoskeleton and secretory machinery required for polarized growth in fungi, is the polarisome. Recognized core constituents in budding yeast are the proteins Spa2, Pea2, Aip3/Bud6, and the key effector Bni1. Multicellular fungi display a more complex polarized morphogenesis than yeasts, suggesting that the filamentous fungal polarisome might fulfill additional functions. In this study, we compared the subcellular organization and dynamics of the putative polarisome components BUD-6 and BNI-1 with those of the bona fide polarisome marker SPA-2 at various developmental stages of Neurospora crassa. All three proteins exhibited a yeast-like polarisome configuration during polarized germ tube growth, cell fusion, septal pore plugging and tip repolarization. However, the localization patterns of all three proteins showed spatiotemporally distinct characteristics during the establishment of new polar axes, septum formation and cytokinesis, and maintained hyphal tip growth. Most notably, in vegetative hyphal tips BUD-6 accumulated as a subapical cloud excluded from the Spitzenk?rper (Spk), whereas BNI-1 and SPA-2 partially colocalized with the Spk and the tip apex. Novel roles during septal plugging and cytokinesis, connected to the reinitiation of tip growth upon physical injury and conidial maturation, were identified for BUD-6 and BNI-1, respectively. Phenotypic analyses of gene deletion mutants revealed additional functions for BUD-6 and BNI-1 in cell fusion regulation, and the maintenance of Spk integrity. Considered together, our findings reveal novel polarisome-independent functions of BUD-6 and BNI-1 in Neurospora, but also suggest that all three proteins cooperate at plugged septal pores, and their complex arrangement within the apical dome of mature hypha might represent a novel aspect of filamentous fungal polarisome architecture.
The North Atlantic Marine Boundary Layer Experiment (NAMBLEX). Overview of the campaign held at Mace Head, Ireland, in summer 2002
D. E. Heard,K. A. Read,J. Methven,S. Al-Haider
Atmospheric Chemistry and Physics Discussions , 2005,
Abstract: The North Atlantic Marine Boundary Layer Experiment (NAMBLEX), involving over 50 scientists from 12 institutions, took place at Mace Head, Ireland (53.32° N, 9.90° W), between 23 July and 4 September 2002. A wide range of state-of-the-art instrumentation enabled detailed measurements of the boundary layer structure and atmospheric composition in the gas and aerosol phase to be made, providing one of the most comprehensive in situ studies of the marine boundary layer to date. This overview paper describes the aims of the NAMBLEX project in the context of previous field campaigns in the Marine Boundary Layer (MBL), the overall layout of the site, a summary of the instrumentation deployed, the temporal coverage of the measurement data, and the numerical models used to interpret the field data. Measurements of some trace species were made for the first time during the campaign, which was characterised by predominantly clean air of marine origin, but more polluted air with higher levels of NOx originating from continental regions was also experienced. This paper provides a summary of the meteorological measurements and Planetary Boundary Layer (PBL) structure measurements, presents time series of some of the longer-lived trace species (O3, CO, H2, DMS, CH4, NMHC, NOx, NOy, PAN) and summarises measurements of other species that are described in more detail in other papers within this special issue, namely oxygenated VOCs, HCHO, peroxides, organo-halogenated species, a range of shorter lived halogen species (I2, OIO, IO, BrO), NO3 radicals, photolysis frequencies, the free radicals OH, HO2 and (HO2+ΣRO2), as well as a summary of the aerosol measurements. NAMBLEX was supported by measurements made in the vicinity of Mace Head using the NERC Dornier-228 aircraft. Using ECMWF wind-fields, calculations were made of the air-mass trajectories arriving at Mace Head during NAMBLEX, and were analysed together with both meteorological and trace-gas measurements. In this paper a chemical climatology is presented to interpret the distribution of air-mass origins and emission sources, and to provide a convenient framework of air-mass classification that is used by other papers in this issue for the interpretation of observed variability in levels of trace gases and aerosols.
Inferring the neutron star equation of state from binary inspiral waveforms
Charalampos Markakis,Jocelyn S. Read,Masaru Shibata,Koji Uryu,Jolien D. E. Creighton,John L. Friedman
Physics , 2010,
Abstract: The properties of neutron star matter above nuclear density are not precisely known. Gravitational waves emitted from binary neutron stars during their late stages of inspiral and merger contain imprints of the neutron-star equation of state. Measuring departures from the point-particle limit of the late inspiral waveform allows one to measure properties of the equation of state via gravitational wave observations. This and a companion talk by J. S. Read reports a comparison of numerical waveforms from simulations of inspiraling neutron-star binaries, computed for equations of state with varying stiffness. We calculate the signal strength of the difference between waveforms for various commissioned and proposed interferometric gravitational wave detectors and show that observations at frequencies around 1 kHz will be able to measure a compactness parameter and constrain the possible neutron-star equations of state.
Measuring the neutron star equation of state with gravitational wave observations
Jocelyn S. Read,Charalampos Markakis,Masaru Shibata,Koji Uryu,Jolien D. E. Creighton,John L. Friedman
Physics , 2009, DOI: 10.1103/PhysRevD.79.124033
Abstract: We report the results of a first study that uses numerical simulations to estimate the accuracy with which one can use gravitational wave observations of double neutron star inspiral to measure parameters of the neutron-star equation of state. The simulations use the evolution and initial-data codes of Shibata and Uryu to compute the last several orbits and the merger of neutron stars, with matter described by a parametrized equation of state. Previous work suggested the use of an effective cutoff frequency to place constraints on the equation of state. We find, however, that greater accuracy is obtained by measuring departures from the point-particle limit of the gravitational waveform produced during the late inspiral. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly for smaller values of the neutron star compactness (the ratio of the mass of the neutron star to its radius). We estimate that realistic equations of state will lead to gravitational waveforms that are distinguishable from point particle inspirals at an effective distance (the distance to an optimally oriented and located system that would produce an equivalent waveform amplitude) of 100 Mpc or less. As Lattimer and Prakash observed, neutron-star radius is closely tied to the pressure at density not far above nuclear. Our results suggest that broadband gravitational wave observations at frequencies between 500 and 1000 Hz will constrain this pressure, and we estimate the accuracy with which it can be measured. Related first estimates of radius measurability show that the radius can be determined to an accuracy of ~1 km at 100 Mpc.
Was the soft X-ray flare in NGC 3599 due to an AGN disc instability or a delayed tidal disruption event?
Richard D. Saxton,Sara E. Motta,S. Komossa,Andrew M. Read
Physics , 2015, DOI: 10.1093/mnras/stv2160
Abstract: We present unpublished data from a tidal disruption candidate in NGC 3599 which show that the galaxy was already X-ray bright 18 months before the measurement which led to its classification. This removes the possibility that the flare was caused by a classical, fast-rising, short-peaked, tidal disruption event. Recent relativistic simulations indicate that the majority of disruptions will actually take months or years to rise to a peak, which will then be maintained for longer than previously thought. NGC 3599 could be one of the first identified examples of such an event. The optical spectra of NGC 3599 indicate that it is a low-luminosity Seyfert/LINER with L_bol~10^40 ergs/s The flare may alternatively be explained by a thermal instability in the accretion disc, which propagates through the inner region at the sound speed, causing an increase of the disc scale height and local accretion rate. This can explain the <9 years rise time of the flare. If this mechanism is correct then the flare may repeat on a timescale of several decades as the inner disc is emptied and refilled.
A model of hyphal tip growth involving microtubule-based transport
K. E. P. Sugden,M. R. Evans,W. C. K. Poon,N. D. Read
Quantitative Biology , 2006, DOI: 10.1103/PhysRevE.75.031909
Abstract: We propose a simple model for mass transport within a fungal hypha and its subsequent growth. Inspired by the role of microtubule-transported vesicles, we embody the internal dynamics of mass inside a hypha with mutually excluding particles progressing stochastically along a growing one-dimensional lattice. The connection between long range transport of materials for growth, and the resulting extension of the hyphal tip has not previously been addressed in the modelling literature. We derive and analyse mean-field equations for the model and present a phase diagram of its steady state behaviour, which we compare to simulations. We discuss our results in the context of the filamentous fungus, Neurospora crassa.
Neutron star equation of state via gravitational wave observations
Charalampos Markakis,Jocelyn S. Read,Masaru Shibata,Koji Uryu,Jolien D. E. Creighton,John L. Friedman,Benjamin D. Lackey
Physics , 2011, DOI: 10.1088/1742-6596/189/1/012024
Abstract: Gravitational wave observations can potentially measure properties of neutron star equations of state by measuring departures from the point-particle limit of the gravitational waveform produced in the late inspiral of a neutron star binary. Numerical simulations of inspiraling neutron star binaries computed for equations of state with varying stiffness are compared. As the stars approach their final plunge and merger, the gravitational wave phase accumulates more rapidly if the neutron stars are more compact. This suggests that gravitational wave observations at frequencies around 1 kHz will be able to measure a compactness parameter and place stringent bounds on possible neutron star equations of state. Advanced laser interferometric gravitational wave observatories will be able to tune their frequency band to optimize sensitivity in the required frequency range to make sensitive measures of the late-inspiral phase of the coalescence.
Page 1 /326638
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.