Abstract:
The tilted axis cranking model is used in combination with the random phase approximation and particle number projection to analyze the influence of dynamical pair correlations in the high-K bands of 178-W and their effect on relative energy and angular momentum. The calculations show the importance of dynamical pair correlations to describe the experiment as well as advantages and problems with the different models in the superfluid and normal state regions.

Abstract:
Using the spectral function F'(z)/F(z) the RPA correlation energy and other properties of a finite system can be written as a contour integral in a compact way. This yields a transparent expression and reduces drastically the numerical efforts for obtaining reliable values. The method applied to pairing vibrations in rotating nuclei as an illustrative example.

Abstract:
The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analysed within the self-consistent one-dimensional cranking oscillator model. It is shown that in even-even nuclei the dynamical moment of inertia calculated in the mean field approximation is equivalent to the Thouless-Valatin moment of inertia calculated in the random phase approximation if and only if the self-consistent conditions for the mean field are fulfilled.

Abstract:
The contribution of quantum shape fluctuations to inertial properties of rotating nuclei has been analyzed for QQ-nuclear interaction using the random phase approximation (RPA). The different recipes to treat the cranking mean field plus RPA problem are considered. The effects of the dN=2 quadrupole matrix elements and the role of the volume conservation condition are discussed.

Abstract:
One hundred sixty-three female patients with SLE (20 to 82 years old) were examined in a cross-sectional study. Venous blood samples were analyzed for resistin, erythrocyte sedimentation rate (ESR), C-reactive protein, creatinine, fasting lipids, complements, tumor necrosis factor-alpha, interleukin (IL)-1β, IL-6, sIL-6R (soluble IL-6 receptor), ICTP (C-terminal telopeptide of type I collagen), and PINP (N-terminal propeptide of type I procollagen). Simple and multiple regression analyses as well as logistic regression analyses were performed. Resistin in serum was compared with 42 healthy female controls with respect to age.Serum resistin levels in controls were similar to those of patients with SLE. Markers of inflammation and current dose of glucocorticosteroids correlated positively to resistin in serum. Markers of renal function, number of prevalent vertebral fractures, and BMD were also significantly associated with resistin. In a multiple regression model, ESR, creatinine, C3, current glucocorticosteroid dose, high-density lipoprotein, and BMD radius remained significantly associated with resistin. In logistic regression analyses with resistin as the independent variable, a significant association was found with ESR (normal or elevated) but not with S-creatinine or z score for hip and radius total.Although resistin measurements did not differ between patients and controls, resistin was clearly associated with general inflammation, renal disease, treatment with glucocorticosteroids, and bone loss. We hypothesize that resistin has proinflammatory and disease-promoting properties in SLE. Further studies are needed to elucidate the mechanism behind these associations.Resistin is a recently described, low-molecular-weight, cystein-rich secretory peptide [1-3]. It is also known as adipocyte-specific secretory factor. Animal studies show that resistin is produced mainly in white adipose tissue and may be the linkage between obesity and insulin resistance. In humans,

Abstract:
In this cross sectional study 150 women were included. They were examined with x-ray of thoracic and lumbar spine (Th4 to L4). A reduction of at least 20% of any vertebral height, assessed by Genant's semiquantitative method, was defined as a fracture. Bone mineral density (BMD) was measured by dual energy x-ray absorptiometry (DXA).Median patient age was 47 years (20 to 82) and disease duration 11 years (1 to 41). Only 6 (4%) women had a history of clinical compressions whereas 43 (29%) had at least one radiological fracture each. The patients with at least one fracture at any site were characterized by older age (P < 0.001), being postmenopausal (P < 0.01), higher Systemic Lupus International Collaborative Clinics Damage Index (P < 0.05), lower BMD total hip and femoral neck (P < 0.05), more peripheral fractures (P < 0.01), medication with bisphosphonates (P <0.05) and calcium and vitamin D3 (P < 0.05). There were no significant differences regarding current or cumulative glucocorticosteroid dose between the groups. In logistic regression analyses high age remained as a risk factor of at least one vertebral fracture at any site whereas low BMD in total hip was associated with vertebral fracture in the lumbar spine.Radiological compression fractures are common but seldom diagnosed in SLE patients. High age and low BMD in total hip, but not in spine, was associated with vertebral fractures.With improved treatment, long term morbidity like cardiovascular disease and fractures become increasingly important in managing systemic lupus erythematosus (SLE). Several studies have shown increased risk for peripheral as well as vertebral fractures in SLE patients compared to the general population [1-3]. Peripheral fractures are often easy to diagnose whereas vertebral compression fractures can be clinically silent [4] or be recognized as ordinary back pain by the patient and therefore overlooked [5]. Glucocorticosteroids, often used in the treatment of SLE, may not only incr

Abstract:
We investigate the use of an operatorial basis in a self-consistent theory of large amplitude collective motion. For the example of the pairing-plus-quadrupole model, which has been studied previously at equilibrium, we show that a small set of carefully chosen state-dependent basis operators is sufficient to approximate the exact solution of the problem accuratly. This approximation is used to study the interplay of quadrupole and pairing degrees of freedom along the collective path for realistic examples of nuclei. We show how this leads to a viable calculational scheme for studying nuclear structure, and discuss the surprising role of pairing collapse.

Abstract:
We investigate shape coexistence in a rotating nucleus. We concentrate on the interesting case of 72-Kr which exhibits an interesting interplay between prolate and oblate states as a function of angular momentum. The calculation uses the local harmonic version of the method of self-consistent adiabatic large-amplitude collective motion. We find that the collective behaviour of the system changes with angular momentum and we focus on the role of non-axial shapes.

Abstract:
We investigate the mixing of different shapes in the A~70 region using the adiabatic self-consistent collective method in a rotating nuclei. The calculation is done for 68^Se and 72-78^Kr which are known to show oblate-prolate shape coexistence at low angular momentum. A pairing-plus-quadrupole Hamiltonian, which is known to reproduce reproduce the structure nuclei in this mass region, is used. We calculate the collective path between the oblate and prolate minima and discuss how the collective behaviour of the system changes with increasing angular momentum.

Abstract:
High spin states in $^{103}$Ag were investigated with the Gammasphere array, using the $^{72}$Ge($^{35}$Cl,$2p2n$)$^{103}$Ag reaction at an incident beam energy of 135 MeV. A $\Delta J$=1 sequence with predominantly magnetic transitions and two nearly-degenerate $\Delta J=1$ doublet bands have been observed. The dipole band shows a decreasing trend in the $B(M1)$ strength as function of spin, a well established feature of magnetic bands. The nearly-degenerate band structures satisfy the three experimental signatures of chirality in the nuclei; however microscopic calculations are indicative of a magnetic phenomenon