Abstract:
In the present article we would like to make a few comments on a recent paper by A. Yefremov in this journal. It is interesting to note here that he concludes his analysis by pointing out that using full machinery of Quaternion Relativity it is possible to explain Pioneer XI anomaly with excellent agreement compared with observed data, and explain around 45% of Pioneer X anomalous acceleration. We argue that perhaps it will be necessary to consider extension of Lorentz transformation to Finsler-Berwald metric, as discussed by a number of authors in the past few years. In this regard, it would be interesting to see if the use of extended Lorentz transformation could also elucidate the long-lasting problem known as Ehrenfest paradox. Further observation is of course recommended in order to refute or verify this proposition.

Abstract:
As we know, it has been quite common nowadays for particle physicists to think of six impossible things before breakfast, just like what their cosmology fellows used to do. In the present paper, we discuss a number of those impossible things, including PT-symmetric periodic potential, its link with condensed matter nuclear science, and possible neat link with Quark confinement theory. In recent years, the PT-symmetry and its related periodic potential have gained considerable interests among physicists. We begin with a review of some results from a preceding paper discussing derivation of PT-symmetric periodic potential from biquaternion Klein-Gordon equation and proceed further with the remaining issues. Further observation is of course recommended in order to refute or verify this proposition.

Abstract:
It was known for quite long time that {a} quaternion space can be generalized to {a} Clifford space, and vice versa; but how to find its neat link with more convenient metric form in {the} General Relativity theory, has not been explored extensively. We begin with a representation of group with non-zero quaternions to derive closed FLRW metric, and from there obtains Carmeli metric, which can be extended further to become 5D and 6D metric (which we propose to call Kaluza-Klein-Carmeli metric). Thereafter we discuss some plausible implications of this metric, beyond describing a galaxy's spiraling motion and redshift data as these have been done by Carmeli and Hartnett. In subsequent section we explain Podkletnov's rotating disc experiment. We also note possible implications to quantum gravity. Further observations are of course recommended in order to refute or verify this proposition.

Abstract:
There have been various explanations of Pioneer blueshift anomaly in the past few years; nonetheless no explanation has been off ered from the viewpoint of Q-relativity physics. In the present paper it is argued that Pioneer anomalous blueshift may be caused by Pioneer spacecraft experiencing angular shift induced by similar Q-elativity effect which may also affect Jupiter satellites. By taking into consideration "aether drift" effect, the proposed method as described herein could explain Pioneer blueshift anomaly within ~0.26% error range, which speaks for itself. Another new proposition of redshift quantization is also proposed from gravitational Bohr-radius which is consistent with Bohr-Sommerfeld quantization. Further observation is of course recommended in order to refute or verify this proposition.

Abstract:
Using phion condensate model as described by Moffat [1], we consider a plausible explanation of (Tifft) intrinsic redshift quantization as described by Bell [6] as result of Hall effect in rotating frame. We also discuss another alternative to explain redshift quantization from the viewpoint of Weyl quantization, which could yield Bohr-Sommerfeld quantization.

Abstract:
As a continuation of the preceding section, we shortly review a series of novel ideas on the physics of hadrons. In the present paper, emphasis is given on some different approaches to the hadron physics, which may be called as "programs" in the sense of Lakatos. For clarity, we only discuss geometrization program, symmetries/unification program, and phenomenology of inter-quark potential program.

Abstract:
This article discusses Neutrosophic Logic interpretation of the Schrodinger's cat paradox. We argue that this paradox involves some degree of indeterminacy (unknown) which Neutrosophic Logic could take into consideration, whereas other methods including Fuzzy Logic could not. For a balanced discussion, other interpretations have also been discussed.

Abstract:
We shortly review a series of novel ideas on the physics of hadrons and nuclear matter. Despite being vastly different in scope and content, these models share a common attribute, in that they offer unconventional viewpoints on infrared QCD and nuclear phenomena. In a sense, they are reminiscent of the plethora of formulations that have been developed over the years on classical gravitation: many seemingly disparate approaches can be effectively used to describe and explore the same physics.

Abstract:
Quaternion space and its respective Quaternion Relativity (it also may be called as Rotational Relativity) has been defined in a number of papers, and it can be shown that this new theory is capable to describe relativistic motion in elegant and straightforward way. Nonetheless there are subsequent theoretical developments which remains an open question, for instance to derive Maxwell equations in Q-space. Therefore the purpose of the present paper is to derive a consistent description of Maxwell equations in Q-space. First we consider a simplified method similar to the Feynman's derivation of Maxwell equations from Lorentz force. And then we present another derivation method using Dirac decomposition, introduced by Gersten (1999). Further observation is of course recommended in order to refute or verify some implication of this proposition.

Abstract:
A numerical solution of Wheeler-De Witt equation for a quantum cosmological model simulating boson and fermion creation in the early Universe evolution is presented. This solution is based on a Wheeler-De Witt equation obtained by Krechet, Fil’chenkov, and Shikin, in the framework of quantum geometrodynamics for a Bianchi-I metric.