Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 6 )

2019 ( 390 )

2018 ( 541 )

2017 ( 533 )

Custom range...

Search Results: 1 - 10 of 449874 matches for " C. J. Hailey "
All listed articles are free for downloading (OA Articles)
Page 1 /449874
Display every page Item
Gamma-Ray Burst Spectral Features: Interpretation as X-ray Emission From A Photoionized Plasma
C. J. Hailey,F. A. Harrison,K. Mori
Physics , 1999, DOI: 10.1086/312139
Abstract: Numerous reports have been made of features, either in emission or absorption, in the 10 - 1000 keV spectra of some gamma-ray bursts. Originally interpreted in the context of Galactic neutron star models as cyclotron line emission and $e^+ - e^-$ annihilation features, the recent demonstration that the majority of GRBs lie at cosmological distances make these explanations unlikely. In this letter, we adopt a relativistic fireball model for cosmological GRBs in which dense, metal rich blobs or filaments of plasma are entrained in the relativistic outflow. In the context of this model, we investigate the conditions under which broadband features, similar to those detected, can be observed. We find a limited region of parameter space capable of reproducing the observed GRB spectra. Finally, we discuss possible constraints further high-energy spectral observations could place on fireball model parameters.
X-ray Line Emission from Evaporating and Condensing Accretion Disk Atmospheres
M. A. Jimenez-Garate,J. C. Raymond,D. A. Liedahl,C. J. Hailey
Physics , 2001, DOI: 10.1086/322465
Abstract: We model the X-rays reprocessed by an accretion disk in a fiducial low-mass X-ray binary system with a neutron star primary. An atmosphere, or the intermediate region between the optically thick disk and a Compton-temperature corona, is photoionized by the neutron star continuum. X-ray lines from the recombination of electrons with ions dominate the atmosphere emission and should be observable with the Chandra and XMM-Newton high-resolution spectrometers. The self-consistent disk geometry agrees well with optical observations of these systems, with the atmosphere shielding the companion from the neutron star. At a critical depth range, the disk gas has one thermally unstable and two stable solutions. A clear difference between the model spectra exists between evaporating and condensing disk atmospheres. This difference should be observable in high-inclination X-ray binaries, or whenever the central continuum is blocked by absorbing material and the extended disk emission is not.
XMM-Newton EPIC observations of Her X-1
G. Ramsay,S. Zane,M. A. Jimenez-Garate,J. W. den Herder,C. J. Hailey
Physics , 2002,
Abstract: We present spin-resolved X-ray data of the neutron star binary Her X-1. We find evidence that the Iron line at 6.4 keV originates from the same location as the blackbody X-ray component. The line width and energy varies over both the spin period and the 35 day precession period. We also find that the correlation between the soft and hard X-ray light curves varies over the 35 day period.
High-Resolution X-ray Spectroscopy of Hercules X-1 with the XMM-Newton RGS: CNO Element Abundance Measurements and Density Diagnostics of a Photoionized Plasma
M. A. Jimenez-Garate,C. J. Hailey,J. W. den Herder,S. Zane,G. Ramsay
Physics , 2002, DOI: 10.1086/342348
Abstract: We analyze the high-resolution X-ray spectrum of Hercules X-1, an intermediate-mass X-ray binary, which was observed with the XMM-Newton Reflection Grating Spectrometer. We measure the elemental abundance ratios by use of spectral models, and we detect material processed through the CNO-cycle. The CNO abundances, and in particular the ratio N/O > 4.0 times solar, provide stringent constraints on the evolution of the binary system. The low and short-on flux states of Her X-1 exhibit narrow line emission from C VI, N VI, N VII, O VII, O VIII, Ne IX, and Ne X ions. The spectra show signatures of photoionization. We measure the electron temperature, quantify photoexcitation in the He alpha lines, and set limits on the location and density of the gas. The recombination lines may originate in the accretion disk atmosphere and corona, or on the X-ray illuminated face of the mass donor (HZ Her). The spectral variation over the course of the 35 d period provides additional evidence for the precession of the disk. During the main-on state, the narrow line emission is absent, but we detect excesses of emission at ~10--15 A, and also near the O VII intercombination line wavelength.
X-ray line emission in Hercules X-1
M. A. Jimenez-Garate,C. J. Hailey,J. W. den Herder,S. Zane,G. Ramsay
Physics , 2002,
Abstract: We find line emission from the hydrogen- and/or helium-like ions of Ne, O, N and C in the low and short-on states of Her X-1, using the XMM-Newton Reflection Grating Spectrometer. The emission line velocity broadening is 200 < sigma < 500 km/s. Plasma diagnostics with the Ne IX, O VII and N VI He-alpha lines and the radiative recombination continua of O VII and N VII, indicate the gas is heated by photoionization. We use spectral models to measure the element abundance ratios N/O, C/O, and Ne/O, which quantify CNO processing in HZ Her. Photoexcitation and high-density effects are not differentiated by the measured He-alpha lines. We set limits on the location, temperature and density of the line emission region. The narrow emission lines can be attributed to reprocessing in either an accretion disk atmosphere and corona or on the X-ray illuminated face of HZ Her. In the main-on state, the bright continuum only allows the detection of interstellar absorption, plus O VII He-alpha emission lines with sigma = 3200 +- 700 km/s and complex profiles. Other broad lines may be present. The broad lines may originate in a region near the pulsar magnetosphere. Fe L lines are not detected.
First Detection of the [OIII] 88 micron Line at High Redshifts: Characterizing the Starburst and Narrow Line Regions in Extreme Luminosity Systems
C. Ferkinhoff,S. Hailey-Dunsheath,T. Nikola,S. C. Parshley,G. J. Stacey,D. J. Benford,J. G. Staguhn
Physics , 2010, DOI: 10.1088/2041-8205/714/1/L147
Abstract: We have made the first detections of the 88 micron [OIII] line from galaxies in the early Universe, detecting the line from the lensed AGN/starburst composite systems APM 08279+5255 at z = 3.911 and SMM J02399-0136 at z = 2.8076. The line is exceptionally bright from both systems, with apparent (lensed) luminosities ~10^11 L_solar. For APM 08279, the [OIII] line flux can be modeled in a star formation paradigm, with the stellar radiation field dominated by stars with effective temperatures, Teff >36,000 K, similar to the starburst found in M82. The model implies ~35% of the total far-IR luminosity of the system is generated by the starburst, with the remainder arising from dust heated by the AGN. The 88 micron line can also be generated in the narrow line region of the AGN if gas densities are around a few 1000 cm-3. For SMM J02399 the [OIII] line likely arises from HII regions formed by hot (Teff >40,000 K) young stars in a massive starburst that dominates the far-IR luminosity of the system. The present work demonstrates the utility of the [OIII] line for characterizing starbursts and AGN within galaxies in the early Universe. These are the first detections of this astrophysically important line from galaxies beyond a redshift of 0.05.
Mid-J CO Emission From NGC 891: Microturbulent Molecular Shocks in Normal Star Forming Galaxies
T. Nikola,G. J. Stacey,D. Brisbin,C. Ferkinhoff,S. Hailey-Dunsheath,S. Parshley,C. Tucker
Physics , 2011, DOI: 10.1088/0004-637X/742/2/88
Abstract: We have detected the CO(6-5), CO(7-6), and [CI] 370 micron lines from the nuclear region of NGC 891 with our submillimeter grating spectrometer ZEUS on the CSO. These lines provide constraints on photodissociation region (PDR) and shock models that have been invoked to explain the H_2 S(0), S(1), and S(2) lines observed with Spitzer. We analyze our data together with the H_2 lines, CO(3-2), and IR continuum from the literature using a combined PDR/shock model. We find that the mid-J CO originates almost entirely from shock-excited warm molecular gas; contributions from PDRs are negligible. Also, almost all the H_2 S(2) and half of the S(1) line is predicted to emerge from shocks. Shocks with a pre-shock density of 2x10^4 cm^-3 and velocities of 10 km/s and 20 km/s for C-shocks and J-shocks, respectively, provide the best fit. In contrast, the [CI] line emission arises exclusively from the PDR component, which is best parameterized by a density of 3.2x10^3 cm^-3 and a FUV field of G_o = 100 for both PDR/shock-type combinations. Our mid-J CO observations show that turbulence is a very important heating source in molecular clouds, even in normal quiescent galaxies. The most likely energy sources for the shocks are supernovae or outflows from YSOs. The energetics of these shock sources favor C-shock excitation of the lines.
Detection of the 158 micron [CII] Transition at z=1.3: Evidence for a Galaxy-Wide Starburst
S. Hailey-Dunsheath,T. Nikola,G. J. Stacey,T. E. Oberst,S. C. Parshley,D. J. Benford,J. G. Staguhn,C. E. Tucker
Physics , 2010, DOI: 10.1088/2041-8205/714/1/L162
Abstract: We report the detection of 158 micron [CII] fine-structure line emission from MIPS J142824.0+352619, a hyperluminous (L_IR ~ 10^13 L_sun) starburst galaxy at z=1.3. The line is bright, and corresponds to a fraction L_[CII]/L_FIR = 2 x 10^-3 of the far-IR (FIR) continuum. The [CII], CO, and FIR continuum emission may be modeled as arising from photodissociation regions (PDRs) that have a characteristic gas density of n ~ 10^4.2 cm^-3, and that are illuminated by a far-UV radiation field ~10^3.2 times more intense than the local interstellar radiation field. The mass in these PDRs accounts for approximately half of the molecular gas mass in this galaxy. The L_[CII]/L_FIR ratio is higher than observed in local ULIRGs or in the few high-redshift QSOs detected in [CII], but the L_[CII]/L_FIR and L_CO/L_FIR ratios are similar to the values seen in nearby starburst galaxies. This suggests that MIPS J142824.0+352619 is a scaled-up version of a starburst nucleus, with the burst extended over several kiloparsecs.
A 158 Micron [CII] Line Survey of Galaxies at z ~ 1 to 2: An Indicator of Star Formation in the Early Universe
G. J. Stacey,S. Hailey-Dunsheath,C. Ferkinhoff,T. Nikola,S. C. Parshley,D. J. Benford,J. G. Staguhn,N. Fiolet
Physics , 2010, DOI: 10.1088/0004-637X/724/2/957
Abstract: We have detected the 158 {\mu}m [CII] line from 12 galaxies at z~1-2. This is the first survey of this important starformation tracer at redshifts covering the epoch of maximum star-formation in the Universe and quadruples the number of reported high z [CII] detections. The line is very luminous, between <0.024-0.65% of the far-infrared continuum luminosity of our sources, and arises from PDRs on molecular cloud surfaces. An exception is PKS 0215+015, where half of the [CII] emission could arise from XDRs near the central AGN. The L[CII] /LFIR ratio in our star-formation-dominated systems is ~8 times larger than that of our AGN-dominated systems. Therefore this ratio selects for star-formation-dominated systems. Furthermore, the L[CII]/LFIR and L[CII]/L(CO(1-0)) ratios in our starforming galaxies and nearby starburst galaxies are the same, so that luminous starforming galaxies at earlier epochs (z~1-2) appear to be scaled up versions of local starbursts entailing kilo-parsec-scale starbursts. Most of the FIR and [CII] radiation from our AGN-dominated sample (excepting PKS 0215+015) also arises from kpc scale starformation, but with far-UV radiation fields ~8 times more intense than in our star-formation-dominated sample. We speculate that the onset of AGN activity stimulates large-scale star-formation activity within AGN-dominated systems. This idea is supported by the relatively strong [OIII] line emission, indicating very young stars, that was recently observed in high z composite AGN/starburst systems. Our results confirm the utility of the [CII] line, and in particular, the L[CII]/L(FIR) and L[CII]/LCO(1-0) ratios as a tracers of star-formation in galaxies at high redshifts.
Proposed (to) EXIST: Hard X-ray Imaging All Sky Survey/Monitor
J. E. Grindlay,T. A. Prince,F. Harrison,N. Gehrels,C. J. Hailey,B. Ramsey,M. C. Weisskopf,G. K. Skinner,P. Ubertini
Physics , 1998,
Abstract: The hard x-ray (10-600 keV) sky is inherently time variable and yet has neither been surveyed nor monitored with a sensitive imaging telescope. The Energetic X-ray Imaging Survey Telescope (EXIST) is a mission concept, proposed for MIDEX, which would conduct the first imaging all-sky hard x-ray survey as well as provide a sensitive all sky monitor. With $\sim 60%$ sky coverage each orbit, and full sky coverage each 50 days, hard x-ray studies of gamma-ray bursts, AGN, galactic transients, x-ray binaries and accretion-powered pulsars can be conducted over a wide range of timescales. We summarize the scientific objectives of EXIST for both the survey and monitoring objectives. We describe the mission concept and the instrumentation approach, which would incorporate a large area array of Cd-Zn-Te (CZT) detectors, as well as some of our ongoing development of CZT array detectors.
Page 1 /449874
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.