Abstract:
We report the observation of strongly damped dipole oscillations of a quantum degenerate 1D atomic Bose gas in a combined harmonic and optical lattice potential. Damping is significant for very shallow axial lattices (0.25 photon recoil energies), and increases dramatically with increasing lattice depth, such that the gas becomes nearly immobile for times an order of magnitude longer than the single-particle tunneling time. Surprisingly, we see no broadening of the atomic quasimomentum distribution after damped motion. Recent theoretical work suggests that quantum fluctuations can strongly damp dipole oscillations of 1D atomic Bose gas, providing a possible explanation for our observations.

Abstract:
We separate a Bose-Einstein condensate into an array of 2D sheets using a 1D optical lattice, and then excite quantized vibrational motion in the direction normal to the sheets. Collisions between atoms induce vibrational de-excitation, transferring the large excitation energy into back-to-back outgoing atoms, imaged as rings in the 2D plane. The ring diameters correspond to vibrational energy level differences, and edge-on imaging allows identification of the final vibrational states. Time dependence of these data provides a nearly complete characterization of the decay process including the energies, populations, and lifetimes of the lowest two excited vibrational levels. The measured decay rates represent a suppression of collisional de-excitation due to the reduced dimensionality, a matter wave analog to inhibited spontaneous emission.

Abstract:
Using Ginzburg-Landau theory, we have performed detailed studies of vortices in the presence of artificial defect arrays, for a thin film geometry. We show that when a vortex approaches the vicinity of a defect, an abrupt transition occurs in which the vortex core develops a ``string'' extending to the defect boundary, while simultaneously the supercurrents and associated magnetic flux spread out and engulf the defect. Current induced depinning of vortices is shown to be dominated by the core string distortion in typical experimental situations. Experimental consequences of this unusual depinning behavior are discussed.

Abstract:
Using Ginzburg-Landau theory, we find novel configurations of vortices in superconducting thin films subject to the magnetic field of a magnetic dot array, with dipole moments oriented perpendicular to the film. Sufficiently strong magnets cause the formation of vortex-antivortex pairs. In most cases, the vortices are confined to dot regions, while the antivortices can form a rich variety of lattice states. We propose an experiment in which the perpendicular component of the dot dipole moments can be tuned using an in-plane magnetic field. We show that in such an experiment the vortex-antivortex pair density shows broad plateaus as a function of the dipole strength. Many of the plateaus correspond to vortex configurations which break dot lattice symmetries. In some of these states, the vortex cores are strongly distorted. Possible experimental consequences are mentioned.

Abstract:
At the nucleus of a superconducting vortex is a small, circular region where superconductivity is destroyed. Like an atomic nucleus, this core may become deformed, and such distortions can have important consequences in non-equilibrium situations. Using Ginzburg-Landau theory, we have investigated this phenomenon for vortices in the presence of artificial defects. We show that when a vortex approaches the vicinity of a defect, an abrupt transition occurs in which the vortex core develops a "string" extending to the defect boundary, while simultaneously the supercurrents and associated magnetic flux spread out and engulf the defect. The energetics of stretching the string determines the pinning behavior of the vortex. Experimental consequences of these strings are discussed.

Abstract:
We compare the collective modes for Bose-condensed systems with two degenerate components with and without spontaneous intercomponent coherence at finite temperature using the time-dependent Hartree-Fock approximation. We show that the interaction between the condensate and non-condensate in these two cases results in qualitatively different collective excitation spectra. We show that at zero temperature the single-particle excitations of the incoherent Bose condensate can be probed by intercomponent excitations.

Abstract:
We develop a time-dependent Hartree-Fock approximation that is appropriate for Bose-condensed systems. Defining a {\it depletion Green's function} allows the construction of condensate and depletion particle densities from eigenstates of a single time-dependent Hamiltonian, guaranteeing that our approach is a conserving approximation. The poles of this Green's function yield the energies of number-changing excitations for which the condensate particle number is held fixed, which we show has a gapped spectrum in the superfluid state. The linearized time-dependent version of this has poles at the collective frequencies of the system, yielding the expected zero sound mode for a uniform infinite system. We show how the approximations may be expressed in a general linear response formalism.

Abstract:
In some range of interlayer distances, the ground state of the two-dimensional electron gas at filling factor nu =4N+1 with N=0,1,2,... is a coherent stripe phase in the Hartree-Fock approximation. This phase has one-dimensional coherent channels that support charged excitations in the form of pseudospin solitons. In this work, we compute the transport gap of the coherent striped phase due to the creation of soliton-antisoliton pairs using a supercell microscopic unrestricted Hartree-Fock approach. We study this gap as a function of interlayer distance and tunneling amplitude. Our calculations confirm that the soliton-antisoliton excitation energy is lower than the corresponding Hartree-Fock electron-hole pair energy. We compare our results with estimates of the transport gap obtained from a field-theoretic model valid in the limit of slowly varying pseudospin textures.

Abstract:
We develop a method to compute shakeup effects on photoluminescence from a strong magnetic field induced two-dimensional Wigner crystal. Only localized holes are considered. Our method treats the lattice electrons and the tunneling electron on an equal footing, and uses a quantum-mechanical calculation of the collective modes that does not depend in any way on a harmonic approximation. We find that shakeup produces a series of sidebands that may be identified with maxima in the collective mode density of states, and definitively distinguishes the crystal state from a liquid state in the absence of electron-hole interaction. In the presence of electron-hole interaction, sidebands also appear in the liquid state coming from short-range density fluctuations around the hole. However, the sidebands in the liquid state and the crystal state have different qualitative behaviors. We also find a shift in the main luminescence peak, that is associated with lattice relaxation in the vicinity of a vacancy. The relationship of the shakeup spectrum with previous mean-field calculations is discussed.

Abstract:
We develop a method to compute shakeup effects on photoluminescence in a Wigner crystal from localized holes. Our method treats the lattice electrons and the tunneling electron on an equal footing, and uses a quantum-mechanical calculation of the collective modes that is realistic throughout the Brillouin zone. We find that shakeup produces a series of sidebands that may be identified with maxima in the collective mode density of states, and definitively distinguishes the crystal state from a liquid state. We also find a shift in the main luminescence peak, that is associated with lattice relaxation in the vicinity of a vacancy.