oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 6 )

2019 ( 391 )

2018 ( 476 )

2017 ( 481 )

Custom range...

Search Results: 1 - 10 of 331601 matches for " C. B. Brook "
All listed articles are free for downloading (OA Articles)
Page 1 /331601
Display every page Item
On the origin of high eccentricity halo stars
C. B. Brook,D. Kawata,B. K. Gibson,C. Flynn
Physics , 2002, DOI: 10.1023/A:1024062431154
Abstract: The present-day chemical and dynamical properties of the Milky Way are signatures of the Galaxy's formation and evolution. Using a self consistent chemodynamical evolution code we examine these properties within the currently favoured paradigm for galaxy formation - hierarchical clustering within a CDM cosmology. Our Tree N-body/Smoothed Particle Hydrodynamics code includes a self-consistent treatment of gravity, hydrodynamics, radiative cooling, star formation, supernova feedback and chemical enrichment. Two models are described which explore the role of small-scale density perturbations in driving the evolution of structure within the Milky Way. The relationship between metallicity and kinematics of halo stars are quantified and the implications for galaxy formation discussed. While high-eccentricity halo stars have previously been considered a signature of ``rapid collapse'', we suggest that many such stars may have come from recently accreted satellites.
Simulating a white dwarf dominated halo
C. B. Brook,Daisuke Kawata,Brad K. Gibson
Physics , 2001,
Abstract: Halo initial mass functions (IMFs) heavily biased toward white dwarf (WD) precursors ~1-8 Msun have been suggested as a suitable mechanism for explaining MACHO events. However, by simple chemical evolution argument, Gibson & Mould (1997; GM97) pointed out that such WD-heavy IMFs (wdIMF) cause the overproduction of carbon and nitrogen. We re-examine this problem using numerical simulations.
The Chemical and Dynamical Evolution of Isolated Dwarf Galaxies
K. Pilkington,B. K. Gibson,F. Calura,G. S. Stinson,C. B. Brook,A. Brooks
Physics , 2011, DOI: 10.1007/978-3-642-22018-0_4
Abstract: Using a suite of simulations (Governato et al. 2010) which successfully produce bulgeless (dwarf) disk galaxies, we provide an analysis of their associated cold interstellar media (ISM) and stellar chemical abundance patterns. A preliminary comparison with observations is undertaken, in order to assess whether the properties of the cold gas and chemistry of the stellar components are recovered successfully. To this end, we have extracted the radial and vertical gas density profiles, neutral hydrogen velocity dispersion, and the power spectrum of structure within the ISM. We complement this analysis of the cold gas with a brief examination of the simulations' metallicity distribution functions and the distribution of alpha-elements-to-iron.
Hierarchical formation of bulgeless galaxies II: Redistribution of angular momentum via galactic fountains
C. B. Brook,G. Stinson,B. K. Gibson,R. Ro?kar,J. Wadsley,T. Quinn
Physics , 2011, DOI: 10.1111/j.1365-2966.2011.19740.x
Abstract: Within a fully cosmological hydrodynamical simulation, we form a galaxy which rotates at 140 km/s, and is characterised by two loose spiral arms and a bar, indicative of a Hubble Type SBc/d galaxy. We show that our simulated galaxy has no classical bulge, with a pure disc profile at z=1, well after the major merging activity has ended. A long-lived bar subsequently forms, resulting in the formation of a secularly-formed "pseudo" bulge, with the final bulge-to-total light ratio B/T=0.21. We show that the majority of gas which loses angular momentum and falls to the central region of the galaxy during the merging epoch is blown back into the hot halo, with much of it returning later to form stars in the disc. We propose that this mechanism of redistribution of angular momentum via a galactic fountain, when coupled with the results from our previous study which showed why gas outflows are biased to have low angular momentum, can solve the angular momentum/bulgeless disc problem of the cold dark matter paradigm.
MaGICC Disks: Matching Observed Galaxy Relationships Over a Wide Stellar Mass Range
C. B. Brook,G. Stinson,B. K. Gibson,J. Wadsley,T. Quinn
Physics , 2012, DOI: 10.1111/j.1365-2966.2012.21306.x
Abstract: We use the same physical model to simulate four galaxies that match the relation between stellar and total mass, over a mass range that includes the vast majority of disc galaxies. The resultant galaxies, part of the Making Galaxies in a Cosmological Context (MaGICC) program, also match observed relations between luminosity, rotation velocity, size, colour, star formation rate, HI mass, baryonic mass, and metallicity. Radiation from massive stars and supernova energy regulate star formation and drive outflows, balancing the complex interplay between cooling gas, star formation, large scale outflows, and recycling of gas in a manner which correctly scales with the mass of the galaxy. Outflows also play a key role in simulating galaxies with exponential surface brightness profiles, flat rotation curves and dark matter cores. Our study implies that large scale outflows are the primary driver of the dependence of disc galaxy properties on mass. We show that the amount of outflows invoked in our model is required to meet the constraints provided by observations of OVI absorption lines in the circum-galactic-media of local galaxies.
Constraining Sub-Grid Physics with High-Redshift Spatially-Resolved Metallicity Distributions
B. K. Gibson,K. Pilkington,C. B. Brook,G. S. Stinson,J. Bailin
Physics , 2013, DOI: 10.1051/0004-6361/201321239
Abstract: We examine the role of energy feedback in shaping the distribution of metals within cosmological hydrodynamical simulations of L* disc galaxies. While negative abundance gradients today provide a boundary condition for galaxy evolution models, in support of inside-out disc growth, empirical evidence as to whether abundance gradients steepen or flatten with time remains highly contradictory. We made use of a suite of L* discs, realised with and without `enhanced' feedback. All the simulations were produced using the smoothed particle hydrodynamics code Gasoline, and their in situ gas-phase metallicity gradients traced from redshift z~2 to the present-day. Present-day age-metallicity relations and metallicity distribution functions were derived for each system. The `enhanced' feedback models, which have been shown to be in agreement with a broad range of empirical scaling relations, distribute energy and re-cycled ISM material over large scales and predict the existence of relatively `flat' and temporally invariant abundance gradients. Enhanced feedback schemes reduce significantly the scatter in the local stellar age-metallicity relation and, especially, the [O/Fe]-[Fe/H] relation. The local [O/Fe] distribution functions for our L* discs show clear bimodality, with peaks at [O/Fe]=-0.05 and +0.05 (for stars with [Fe/H]>-1), consistent with our earlier work on dwarf discs. Our results with `enhanced' feedback are inconsistent with our earlier generation of simulations realised with `conservative' feedback. We conclude that spatially-resolved metallicity distributions, particularly at high-redshift, offer a unique and under-utilised constraint on the uncertain nature of stellar feedback processes.
Properties of simulated Milky Way-mass galaxies in loose group and field environments
C. G. Few,B. K. Gibson,S. Courty,L. Michel-Dansac,C. B. Brook,G. S. Stinson
Physics , 2012, DOI: 10.1051/0004-6361/201219649
Abstract: We test the validity of comparing simulated field disk galaxies with the empirical properties of systems situated within environments more comparable to loose groups, including the Milky Way's Local Group. Cosmological simulations of Milky Way-mass galaxies have been realised in two different environment samples: in the field and in environments with similar properties to the Local Group. Apart from the environments of the galaxies, the samples are kept as homogeneous as possible with equivalent ranges in last major merger time, halo mass and halo spin. Comparison of these two samples allow for systematic differences in the simulations to be identified. Metallicity gradients, disk scale lengths, colours, magnitudes and age-velocity dispersion relations are studied for each galaxy in the suite and the strength of the link between these and environment of the galaxies is studied. The bulge-to-disk ratio of the galaxies show that these galaxies are less spheroid dominated than many other simulated galaxies in literature with the majority of both samples being disk dominated. We find that secular evolution and mergers dominate the spread of morphologies and metallicity gradients with no visible differences between the two environment samples. In contrast with this consistency in the two samples there is tentative evidence for a systematic difference in the velocity dispersion-age relations of galaxies in the different environments. Loose group galaxies appear to have more discrete steps in their velocity dispersion-age relations. We conclude that at the current resolution of cosmological galaxy simulations field environment galaxies are sufficiently similar to those in loose groups to be acceptable proxies for comparison with the Milky Way provided that a similar assembly history is considered.
The Role of Feedback in Shaping the Structure of the Interstellar Medium
A. P. Walker,B. K. Gibson,K. Pilkington,C. B. Brook,P. Dutta,S. Stanimirovic,G. S. Stinson,J. Bailin
Physics , 2014, DOI: 10.1093/mnras/stu419
Abstract: We present an analysis of the role of feedback in shaping the neutral hydrogen (HI) content of simulated disc galaxies. For our analysis, we have used two realisations of two separate Milky Way-like (~L*) discs - one employing a conservative feedback scheme (MUGS), the other significantly more energetic (MaGICC). To quantify the impact of these schemes, we generate zeroth moment (surface density) maps of the inferred HI distribution; construct power spectra associated with the underlying structure of the simulated cold ISM, in addition to their radial surface density and velocity dispersion profiles. Our results are compared with a parallel, self-consistent, analysis of empirical data from THINGS (The HI Nearby Galaxy Survey). Single power-law fits (P~k^gamma) to the power spectra of the stronger-feedback (MaGICC) runs (over spatial scales corresponding to 0.5 kpc to 20 kpc) result in slopes consistent with those seen in the THINGS sample (gamma = -2.5). The weaker-feedback (MUGS) runs exhibit shallower power law slopes (gamma = -1.2). The power spectra of the MaGICC simulations are more consistent though with a two-component fit, with a flatter distribution of power on larger scales (i.e., gamma = -1.4 for scales in excess of 2 kpc) and a steeper slope on scales below 1 kpc (gamma = -5), qualitatively consistent with empirical claims, as well as our earlier work on dwarf discs. The radial HI surface density profiles of the MaGICC discs show a clear exponential behaviour, while those of the MUGS suite are essentially flat; both behaviours are encountered in nature, although the THINGS sample is more consistent with our stronger (MaGICC) feedback runs.
The Main Sequence and the Fundamental Metallicity Relation in MaGICC Galaxies: Evolution and Scatter
A. Obreja,C. B. Brook,G. Stinson,R. Domínguez-Tenreiro,B. K. Gibson,L. Silva,G. L. Granato
Physics , 2014, DOI: 10.1093/mnras/stu891
Abstract: Using cosmological galaxy simulations from the MaGICC project, we study the evolution of the stellar masses, star formation rates and gas phase abundances of star forming galaxies. We derive the stellar masses and star formation rates using observational relations based on spectral energy distributions by applying the new radiative transfer code GRASIL-3D to our simulated galaxies. The simulations match well the evolution of the stellar mass-halo mass relation, have a star forming main sequence that maintains a constant slope out to redshift z $\sim$ 2, and populate projections of the stellar mass - star formation - metallicity plane, similar to observed star forming disc galaxies. We discuss small differences between these projections in observational data and in simulations, and the possible causes for the discrepancies. The light-weighted stellar masses are in good agreement with the simulation values, the differences between the two varying between 0.06 dex and 0.20 dex. We also find a good agreement between the star formation rate tracer and the true (time-averaged) simulation star formation rates. Regardless if we use mass- or light-weighted quantities, our simulations indicate that bursty star formation cycles can account for the scatter in the star forming main sequence.
The MaGICC Baryon Cycle: The Enrichment History of Simulated Disc Galaxies
C. B. Brook,G. Stinson,B. K. Gibson,S. Shen,A. V. Macciò,J. Wadsley,T. Quinn
Physics , 2013, DOI: 10.1093/mnras/stu1406
Abstract: Using cosmological galaxy formation simulations from the MaGICC project, spanning more than three magnitudes in stellar mass (~10^7-3x10^{10} Msun), we trace the baryonic cycle of infalling gas from the virial radius through to its participation in the star formation process. An emphasis is placed upon the temporal history of chemical enrichment during its passage through the corona and CGM. We derive the distributions of time between gas crossing the virial radius and being accreted to the star forming region (which allows mixing within the corona), as well as the time between gas being accreted to the star forming region and then forming stars (which allows mixing within the disc). Significant numbers of stars are formed from gas that cycles back through the hot halo after first accreting to the star forming region. Gas entering high mass galaxies is pre-enriched in low mass proto-galaxies prior to entering the virial radius of the central progenitor, with only small amounts of primordial gas accreted, even at high redshift (z~5). After entering the virial radius, significant further enrichment occurs prior to the accretion of the gas to the star forming region, with gas that is feeding the star forming region surpassing 0.1Z by z=0. Mixing with halo gas, itself enriched via galactic fountains, is thus crucial in determining the metallicity at which gas is accreted to the disc. The lowest mass simulation (Mvir~2x10^{10}Msun, with M*~10^7Msun), by contrast, accretes primordial gas through the virial radius and onto the disc at all times. Much like the classical analytical solutions to the `G-dwarf problem', overproduction of low-metallicity stars is ameliorated by the inefficiency of star formation. Finally, gas outflow/metal removal rates from star forming regions as a function of galactic mass are presented.
Page 1 /331601
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.