Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 2 )

2019 ( 219 )

2018 ( 300 )

2017 ( 298 )

Custom range...

Search Results: 1 - 10 of 226146 matches for " Benjamin C. Bromley "
All listed articles are free for downloading (OA Articles)
Page 1 /226146
Display every page Item
Gravitationally Focused Dark Matter Around Compact Stars
Benjamin C. Bromley
Physics , 2011, DOI: 10.1088/0067-0049/197/2/37
Abstract: If dark matter self-annihilates then it may produce an observable signal when its density is high. The details depend on the intrinsic properties of dark matter and how it clusters in space. For example, the density profile of some dark matter candidates may rise steeply enough toward the Galactic Center that self-annihilation produces detectable gamma-ray emission. Here, we discuss the possibility that an annihilation signal may arise near a compact object (e.g., neutron star or black hole) even when the density of dark matter in the neighborhood of the object is uniform. Gravitational focusing produces a local enhancement of density, with a profile that falls off approximately as the inverse square-root of distance from the compact star. While geometric dilution may overwhelm the annihilation signal from this local enhancement, magnetic fields tied to the compact object can increase the signal's contrast relative to the background.
The Distortion of the Cosmic Microwave Background by the Milky Way
Benjamin Czaja,Benjamin C. Bromley
Physics , 2014, DOI: 10.1103/PhysRevD.90.047302
Abstract: The Milky Way can act as a large-scale weak gravitational lens of the cosmic microwave background (CMB). We study this effect using a photon ray-tracing code and a Galactic mass distribution with disk, bulge and halo components. For an observer at the Sun's coordinates in the Galaxy, the bending of CMB photon paths is limited to less than one arcsecond, and only for rays that pass within a few degrees of the Galactic Center. However, the entire sky is affected, resulting in global distortions of the CMB on large angular scales. These distortions can cause the low-order multipoles of a spherical harmonic expansion of the CMB sky temperature to leak into higher-order modes. Thus the component of the CMB dipole that results from the Local Group's motion relative to the local cosmic frame of rest contributes to higher-order moments for an observer in the solar system. With our ray-tracing code we show that the phenomenon is not sensitive to the specific choice of Galactic potential. We also quantitatively rule it out as a contributor to CMB anomalies such as power asymmetry or correlated alignment of low-order multipole moments.
Is the cosmic microwave background really non-Gaussian?
Benjamin C. Bromley,Max Tegmark
Physics , 1999, DOI: 10.1086/312304
Abstract: Two recent papers have claimed detection of non-Gaussian features in the COBE DMR sky maps of the cosmic microwave background. We confirm these results, but argue that Gaussianity is still not convincingly ruled out. Since a score of non-Gaussianity tests have now been published, one might expect some mildly significant results even by chance. Moreover, in the case of one measure which yields a detection, a bispectrum statistic, we find that if the non-Gaussian feature is real, it may well be due to detector noise rather than a non-Gaussian sky signal, since a signal-to-noise analysis localizes it to angular scales smaller than the beam. We study its spatial origin in case it is nonetheless due to a sky signal (eg, a cosmic string wake or flat-spectrum foreground contaminant). It appears highly localized in the direction b=39.5, l=257, since removing a mere 5 pixels inside a single COBE beam area centered there makes the effect statistically insignificant. We also test Guassianity with an eigenmode analysis which allows a sky map to be treated as a random number generator. A battery of tests of this generator all yield results consistent with Gaussianity.
Observational evidence for stochastic biasing
Max Tegmark,Benjamin C. Bromley
Physics , 1998, DOI: 10.1086/312068
Abstract: We show that the galaxy density in the Las Campanas Redshift Survey (LCRS) cannot be perfectly correlated with the underlying mass distribution since various galaxy subpopulations are not perfectly correlated with each other, even taking shot noise into account. This rules out the hypothesis of simple linear biasing, and suggests that the recently proposed stochastic biasing framework is necessary for modeling actual data.
Variations on Debris Disks II. Icy Planet Formation as a Function of the Bulk Properties and Initial Sizes of Planetesimals
Scott J. Kenyon,Benjamin C. Bromley
Physics , 2009, DOI: 10.1088/0067-0049/188/1/242
Abstract: We describe comprehensive calculations of the formation of icy planets and debris disks at 30-150 AU around 1-3 solar mass stars. Disks composed of large, strong planetesimals produce more massive planets than disks composed of small, weak planetesimals. The maximum radius of icy planets ranges from roughly 1500 km to 11,500 km. The formation rate of 1000 km objects - `Plutos' - is a useful proxy for the efficiency of icy planet formation. Plutos form more efficiently in massive disks, in disks with small planetesimals, and in disks with a range of planetesimal sizes. Although Plutos form throughout massive disks, Pluto production is usually concentrated in the inner disk. Despite the large number of Plutos produced in many calculations, icy planet formation is inefficient. At the end of the main sequence lifetime of the central star, Plutos contain less than 10% of the initial mass in solid material. This conclusion is independent of the initial mass in the disk or the properties of planetesimals. Debris disk formation coincides with the formation of planetary systems containing Plutos. As Plutos form, they stir leftover planetesimals to large velocities. A cascade of collisions then grinds the leftovers to dust, forming an observable debris disk. In disks with small (< 1-10 km) planetesimals, collisional cascades produce luminous debris disks with maximum luminosity roughly 0.01 times the stellar luminosity. Disks with larger planetesimals produce much less luminous debris disks. Observations of debris disks around A-type and G-type stars strongly favor models with small planetesimals. In these models, our predictions for the time evolution and detection frequency of debris disks agree with published observations. We suggest several critical observations that can test key features of our calculations.
The Fate of Scattered Planets
Benjamin C. Bromley,Scott J. Kenyon
Physics , 2014, DOI: 10.1088/0004-637X/796/2/141
Abstract: As gas giant planets evolve, they may scatter other planets far from their original orbits to produce hot Jupiters or rogue planets that are not gravitationally bound to any star. Here, we consider planets cast out to large orbital distances on eccentric, bound orbits through a gaseous disk. With simple numerical models, we show that super-Earths can interact with the gas through dynamical friction to settle in the remote outer regions of a planetary system. Outcomes depend on planet mass, the initial scattered orbit, and the evolution of the time-dependent disk. Efficient orbital damping by dynamical friction requires planets at least as massive as the Earth. More massive, longer-lived disks damp eccentricities more efficiently than less massive, short-lived ones. Transition disks with an expanding inner cavity can circularize orbits at larger distances than disks that experience a global (homologous) decay in surface density. Thus, orbits of remote planets may reveal the evolutionary history of their primordial gas disks. A remote planet with an orbital distance ~100 AU from the Sun is plausible and might explain correlations in the orbital parameters of several distant trans-Neptunian objects.
Dusty Rings: Signposts of Recent Planet Formation
Scott J. Kenyon,Benjamin C. Bromley
Physics , 2002, DOI: 10.1086/344084
Abstract: Many nearby stars are surrounded by a bright ring or disk of cold dust. Our calculations show that these disks and rings of dust are signposts of recent planet formation. Bright rings appear because dust associated with the formation of a planet absorbs and scatters light from the central star. The calculations explain the rings observed so far and predict that all nascent solar systems have dusty rings.
Line emission from an accretion disk around black hole: effects of the disk structure
Vladimir I. Pariev,Benjamin C. Bromley
Physics , 1997, DOI: 10.1063/1.55906
Abstract: The observed iron K-alpha fluorescence lines in Seyfert galaxies provide strong evidence for an accretion disk near a supermassive black hole as a source of the line emission. Previous studies of line emission have considered only geometrically thin disks, where the gas moves along geodesics in the equatorial plane of a black hole. Here we extend this work to include effects on line profiles from finite disk thickness, radial accretion flow and turbulence. We adopt the Novikov-Thorne solution, and find that within this framework, turbulent broadening is the most significant effect. The most prominent changes in the skewed, double-horned line profiles is a substantial reduction in the maximum flux at both red and blue peaks. We show that at the present level of signal-to-noise in X-ray spectra, proper treatment of the actual structure of the accretion disk can change estimates of the inclination angle of the disk. Thus these effects will be important for future detailed modeling of high quality observational data.
Emission Line Formation in a Relativistic Accretion Disk
George B. Rybicki,Benjamin C. Bromley
Physics , 1997,
Abstract: The observed profile of spectral lines from a relativistic accretion disk can constrain parameters such as the disk geometry and the rotation of the central black hole. The formation of the spectral line in a disk generally has been modeled with simple assumptions such as local isotropy of emission. Here we consider line formation in the presence of velocity gradients induced by the differential flow in the disk. In this case the emission can have anisotropy in the form of an azimuthal dependence relative to the local principle axes of shear. Since the physical conditions in a disk are uncertain in detail, we investigate this effect with simple parameterized models based on Sobolev theory to highlight the overall character of the changes in the line profile. We find that velocity gradients generally cause a relative increase of flux in the red wing, hence the inner radius of the disk would be underestimated if the effect were not taken into consideration. If the inner radius is used as a signature of black hole rotation, as when the disk is not emissive within the marginally stable circular orbit, then the inferred rotation would be overestimated in cases where the emissivity of the disk has fairly shallow fall-off with radius. If the disk were emissive even within the marginally stable orbit, then the local azimuthal anisotropy of emission produces features in the line profile which distinguish rotating from nonrotating black holes.
Polarimetric Imaging of the Massive Black Hole at the Galactic Center
Benjamin C. Bromley,Fulvio Melia,Siming Liu
Physics , 2001, DOI: 10.1086/322862
Abstract: The radio source Sgr A* in the Galactic center emits a polarized spectrum at millimeter and sub-millimeter wavelengths that is strongly suggestive of relativistic disk accretion onto a massive black hole. We use the well-constrained mass of Sgr A* and a magnetohydrodynamic model of the accretion flow to match both the total flux and polarization from this object. Our results demonstrate explicitly that the shift in the position angle of the polarization vector, seen at wavelengths near the peak of the mm to sub-mm emission from this source, is a signal of relativistic accretion flow in a strong gravitational field. We provide maps of the polarized emission to illustrate how the images of polarized intensity from the vicinity of the black hole would appear in upcoming observations with very long baseline radio interferometers (VLBI). Our results suggest that near-term VLBI observations will be able to directly image the polarized Keplerian portion of the flow near the horizon of the black hole.
Page 1 /226146
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.