oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 10 of 580 matches for " Anopheles gambiae "
All listed articles are free for downloading (OA Articles)
Page 1 /580
Display every page Item
SURVAI VECTOR DAN RESERVOIR PENYAKIT ZOONOTIK YANG DITULARKAN OLEH ARTHROPODA DI DESA BASI, KECAMATAN DONDO KABUPATEN BUOL — TOLITOLI, SULAWESI TENGAH, INDONESIA
Tuti R. Hadi,Sustriayu Nalim
Bulletin of Health Research , 2012,
Abstract: An ecological survey was conducted in Central Sulawesi to obtain information on the distri-bution of reservoir hosts and vectors of arthropod-borne zoonotic diseases. Serological test were done from human sera collected in the area against arboviral and rickettsial antigens. Three species of Culex mosquitoes known as potential vectors of arbovirosis: Cx. bitaeni-orhynchus, Cx. gelidus and Cx. tritaeniorhynchus, were found in the area surveyed. A known vector of scrub typhus, Leptotrombidium (L.) deliensis, was also found in that area. Suspected reservoirs of arthropod-borne zoonosis in the area surveyed were chickens, ducks, cows, horses, monkeys and rats. The prevalence of antibodies against arbovirus group A antigens ( Chikungunya, Getah and Sindbis ) was 34,06%, 28,5% and 4,39%, against arbovirus group B antigen (Japanese Encepha-litis) was 93,4% and none against Rickettsia tsutsugamushi and Rickettsia typhy antigens, out of 91 human sera examined. Antibodies were found in animal sera examined against arbovirus group A and arbovirus group B antigens in a variation of 11,8% — 100%. The prevalence of antibodies against R. tsutsugamushi antigen was 22,7% out of 22 rat sera examined.
The molecular mechanism for DDT detoxification in Anopheles gambiae: A molecular docking study  [PDF]
William N. Setzer
Journal of Biophysical Chemistry (JBPC) , 2011, DOI: 10.4236/jbpc.2011.22016
Abstract: The epsilon class glutathione-S-transferase of Anopheles gambiae, agGSTe2, is capable of metabolizing DDT. A molecular docking analysis of DDT with agGSTe2 support an E2 elimination mechanism wherein the glutathione sulfur serves as the base to convert DDT to DDE.
Impact of Urban Agriculture on the Species Distribution and Insecticide Resistance Profile of Anopheles gambiae s.s. and Anopheles coluzzii in Accra Metropolis, Ghana  [PDF]
Joseph Chabi, Miracle C. Eziefule, Rebecca Pwalia, Joannitta Joannides, Dorothy Obuobi, Godwin Amlalo, Charlotte A. Addae, Iddrisu Alidu, Dominic Acquah-Baidoo, Samuel Akporh, Sampson Gbagba, Kwadwo K. Frempong, Melinda P. Hadi, Helen Pates Jamet, Samuel K. Dadzie
Advances in Entomology (AE) , 2018, DOI: 10.4236/ae.2018.63016
Abstract: Malaria incidence in urban areas has generally been low compared to rural areas but recent data indicate that urban malaria remains a public health problem. It is therefore important to understand the factors that promote urban malaria to help formulate future vector control strategies. This study compared Anopheles gambiae s.l. (A. gambiae s.l.) species composition, distribution and insecticide resistance mechanisms between vegetable and non-vegetable growing areas in Accra Metropolis. Four sites were selected within the city of Accra which comprised of two vegetable-growing and two non-vegetable growing areas. WHO susceptibility tests were carried out on adults A. gambiae s.l. reared from larvae collected from the sites. Five insecticides were tested and the A. gambiae complex, resistance genotypes and enzyme activities of each population were characterized. All A. gambiae s.l. populations tested were resistant to all the insecticides, but relatively lower mortalities were observed in the vegetable growing areas. The mortality against 0.05% deltamethrin was 2.6% (Opeibea) and 12.5% (Korle-Bu) for the vegetable growing areas and 36.2% (Achimota) and 38.9% (Mataheko) in the non-vegetable growing areas. Anopheles gambiae s.s. (95% of Opeibea population) and Anopheles coluzzii, (98% of Korle-Bu population) were the dominant species in the vegetable growing areas. The voltage-gated sodium channel (Vgsc-1014F) frequencies of all the populations were similar but the acetylcholinesterase (ace-1) frequencies were significantly lower (p < 0.05) in Korle-Bu and Mataheko populations. High level of P450s and esterases were observed in the A. gambiae s.l. from Opeibea than from the other areas. The contribution of urban agriculture in the development of insecticide resistance needs to be considered in the formulation of future vector control strategies alongside other domestic usages.
Spatial distribution and male mating success of Anopheles gambiae swarms
Abdoulaye Diabaté, Alpha S Yaro, Adama Dao, Moussa Diallo, Diana L Huestis, Tovi Lehmann
BMC Evolutionary Biology , 2011, DOI: 10.1186/1471-2148-11-184
Abstract: We found substantial variation in swarm size and in mating success between swarms. A strong correlation between swarm size and mating success was observed, and consistent with the hotspot model of lek formation, the per capita mating success of individual males did not increase with swarm size. For the spatial distribution of swarms, our results revealed that some display sites were more attractive to both males and females and that females were more attracted to large swarms. While the swarm markers we recognize help us in localizing swarms, they did not account for the variation in swarm size or in the swarm mating success, suggesting that mosquitoes probably are attracted to these markers, but also perceive and respond to other aspects of the swarming site.Characterizing the mating system of a species helps understand how this species has evolved and how selective pressures operate on male and female traits. The current study looked at male mating success of An. gambiae and discussed possible factors that account for its variation. We found that swarms of An. gambiae conform to the hotspot model of lek formation. But because swarms may lack the female choice component, we propose that the An. gambiae mating system is a lek-like system that incorporates characteristics pertaining to other mating systems such as scramble mating competition.Lekking behaviour is a frequent and conspicuous type of mating aggregation where males gather and display to prospective mates [1], and references therein. Display territories do not hold resources attractive to females other than the males themselves, hence it is assumed that females visit leks solely to copulate [2]. Lekking mating systems are characterized by (i) male clustering; (ii) no male parental care; (iii) no resource on the territory; (iv) fighting over male territories; (v) females mate choice; and (vi) in many cases, stability of lek location over time [3], and references therein. Although the lek mating system has s
Female Anopheles gambiae antennae: increased transcript accumulation of the mosquito-specific odorant-binding-protein OBP2
Seth A Hoffman, Lakshminarayanan Aravind, Soundarapandian Velmurugan
Parasites & Vectors , 2012, DOI: 10.1186/1756-3305-5-27
Abstract: Our initial focus is on odorant binding proteins with differential transcript accumulation between female and male mosquitoes. We report that the odorant binding protein, OBP2 (AGAP003306), had increased expression in the antennae of female vs. male Anopheles gambiae sensu stricto (G3 strain). The increased expression in antennae of females of this gene by quantitative RT-PCR was 4.2 to 32.3 fold in three independent biological replicates and two technical replicate experiments using A. gambiae from two different laboratories. OBP2 is a member of the vast OBP superfamily of insect odorant binding proteins and belongs to the predominantly dipteran clade that includes the Culex oviposition kairomone-binding OBP1. Phylogenetic analysis indicates that its orthologs are present across culicid mosquitoes and are likely to play a conserved role in recognizing a molecule that might be critical for female behavior.OBP2 has increased mRNA transcript accumulation in the antennae of female as compared to male A. gambiae. This molecule and related molecules may play an important role in female mosquito feeding and breeding behavior. This finding may be a step toward providing a foundation for understanding mosquito olfactory requirements and developing control strategies based on reducing mosquito feeding and breeding success.Factors that influence mosquito fitness, especially host seeking and mate finding are complex and modulated by multiple cues, of which olfactory cues are most important [1-4]. Detection of odor molecules requires odorant binding proteins (OBPs) that are abundant in antennal chemosensilla [5,6]. OBPs are low molecular weight soluble proteins that bind and transport odor molecules from sensillae to G-protein-coupled receptors in olfactory sensory neurons [6]. The finding of receptor AgamOBP1 binding to its ligand indole demonstrated the significance of OBPs in odor recognition [7]. Understanding olfactory function could lead to development of malaria control
New selenoproteins identified in silico from the genome of Anopheles gambiae
Liang Jiang,Qiong Liu,Ping Chen,ZhongHong Gao,HuiBi Xu
Science China Life Sciences , 2007, DOI: 10.1007/s11427-007-0011-7
Abstract: Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins, where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine. The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species. Available computational tools fail to correctly predict selenoproteins. Thus, we developed a new method to identify selenoproteins from the genome of Anopheles gambiae computationally. Based on released genomic information, several programs were edited with PERL language to identify selenocysteine insertion sequence (SECIS) element, the coding potential of TGA codons, and cysteine-containing homologs of selenoprotein genes. Our results showed that 11365 genes were terminated with TGA codons, 918 of which contained SECIS elements. Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons. Finally, 7 genes were found to fully meet requirements for selenoproteins, although they have not been annotated as selenoproteins in NCBI databases. Deduced from their basic properties, the newly found selenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles’ vectorial capacity of Plasmodium. This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.
New Selenoproteins Identified in silico from the Genome of Anopheles gambiae
New selenoproteins identified in silico from the genome of Anopheles gambiae

Jiang Liang Liu Qiong Chen Ping Gao ZhongHong &,Xu HuiBi,

中国科学C辑(英文版) , 2007,
Abstract: Selenoprotein is biosynthesized by the incorporation of selenocysteine into proteins,where the TGA codon in the open reading frame does not act as a stop signal but is translated into selenocysteine.The dual functions of TGA result in mis-annotation or lack of selenoproteins in the sequenced genomes of many species.Available computational tools fail to correctly predict selenoproteins.Thus,we devel-oped a new method to identify selenoproteins from the genome of Anopheles gambiae computationally.Based on released genomic information,several programs were edited with PERL language to identify selenocysteine insertion sequence(SECIS)element,the coding potential of TGA codons,and cys-teine-containing homologs of selenoprotein genes.Our results showed that 11365 genes were termi-nated with TGA codons,918 of which contained SECIS elements.Similarity search revealed that 58 genes contained Sec/Cys pairs and similar flanking regions around in-frame TGA codons.Finally,7 genes were found to fully meet requirements for selenoproteins,although they have not been anno-tated as selenoproteins in NCBI databases.Deduced from their basic properties,the newly found se-lenoproteins in the genome of Anopheles gambiae are possibly related to in vivo oxidation tolerance and protein regulation in order to interfere with anopheles' vectorial capacity of Plasmodium.This study may also provide theoretical bases for the prevention of malaria from anopheles transmission.
Ivermectin inhibits the sporogony of Plasmodium falciparum in Anopheles gambiae
Kobylinski Kevin C,Foy Brian D,Richardson Jason H
Malaria Journal , 2012, DOI: 10.1186/1475-2875-11-381
Abstract: Background When ingested in a blood meal, ivermectin has been shown to reduce the survivorship of Anopheles gambiae in the laboratory and field. Furthermore, ivermectin mass drug administrations in Senegal have been shown to reduce the proportion of Plasmodium falciparum-sporozoite-containing An. gambiae. This study addresses whether ivermectin inhibits sporogony of P. falciparum in An. gambiae. Methods Anophele gambiae s.s. G3 strain were fed two concentrations of ivermectin (LC25 and LC5) along with P. falciparum NF54 in human blood meals at staggered intervals. Mosquitoes ingested ivermectin concurrent with parasites (DPI 0), or at three (DPI 3), six (DPI 6), and nine (DPI 9) days post parasite ingestion, or three days prior (DPI 3) to parasite ingestion. Mosquitoes were dissected at seven, twelve or fourteen days post parasite ingestion and either oocyst or sporozoite prevalence was recorded. To determine if P. falciparum sporozoite-containing An. gambiae were more susceptible to ivermectin than uninfected controls, survivorship was recorded for mosquitoes which ingested P. falciparum or control blood meal on DPI 0 and then a second blood meal containing ivermectin (LC25) on DPI 14. Results Ivermectin (LC25) co-ingested (DPI 0) with parasites reduced the proportion of An. gambiae that developed oocysts (χ2 = 15.4842, P = 0.0002) and sporozoites (χ2 = 19.9643, P < 0.0001). Ivermectin (LC25) ingested DPI 6 (χ2 = 8.5103, P = 0.0044) and 9 (χ2 = 14.7998, P < 0.0001) reduced the proportion of An. gambiae that developed sporozoites but not when ingested DPI 3 (χ2 = 0.0113, P = 1). Ivermectin (LC5) co-ingested (DPI 0) with parasites did not reduce the proportion of An. gambiae that developed oocysts (χ2 = 4.2518, P = 0.0577) or sporozoites (χ2 = 2.3636, P = 0.1540), however, when ingested DPI 3 the proportion of An. gambiae that developed sporozoites was reduced (χ2 = 8.4806, P = 0.0047). Plasmodium falciparum infection significantly reduced the survivorship of An. gambiae that ingested ivermectin (LC25) on DPI 14 compared to control mosquitoes that ingested a primary blood meal without parasites (χ2 = 4.97, P = 0.0257). Conclusions Ivermectin at sub-lethal concentrations inhibits the sporogony of P. falciparum in An. gambiae. These findings support the utility of ivermectin for P. falciparum transmission control.
Increase in susceptibility to insecticides with aging of wild Anopheles gambiae mosquitoes from C te d’Ivoire
Chouaibou Mouhamadou S,Chabi Joseph,Bingham Georgina V,Knox Tessa B
BMC Infectious Diseases , 2012, DOI: 10.1186/1471-2334-12-214
Abstract: Background Appropriate monitoring of vector insecticide susceptibility is required to provide the rationale for optimal insecticide selection in vector control programs. Methods In order to assess the influence of mosquito age on susceptibility to various insecticides, field-collected larvae of An. gambiae s.l. from Tiassalé were reared to adults. Females aged 1, 2, 3, 5 and 10 days were exposed to 5 insecticides (deltamethrin, permethrin, DDT, malathion and propoxur) using WHO susceptibility test kits. Outcome measures included the LT50 (exposure time required to achieve 50% knockdown), the RR (resistance ratio, i.e. a calculation of how much more resistant the wild population is compared with a standard susceptible strain) and the mortality rate following 1 hour exposure, for each insecticide and each mosquito age group. Results There was a positive correlation between the rate of knockdown and mortality for all the age groups and for all insecticides tested. For deltamethrin, the RR50 was highest for 2 day old and lowest for 10 day old individuals. Overall, mortality was lowest for 2 and 3 day old individuals and significantly higher for 10 day old individuals (P < 0.05). With permethrin, the RR50 was highest for 1 to 3 day old individuals and lowest for 10 day old individuals and mortality was lowest for 1 to 3 day old individuals, intermediate for 5 day old and highest for 10 day old individuals. DDT did not display any knockdown effect and mortality was low for all mosquito age groups (<7%). With malathion, the RR50 was low (1.54 - 2.77) and mortality was high (>93%) for all age groups. With propoxur, no knockdown effect was observed for 1, 2 and 3 day old individuals and a very low level of mortality was observed (< 4%), which was significantly higher for 5 and 10 day old individuals (30%, P < 0.01). Conclusion Results indicate that for An. gambiae s.l. adults derived from wild-collected larvae, there was an influence of age on insecticide susceptibility status, with younger individuals (1 to 3 days old) more resistant than older mosquitoes. This indicates that the use of 1 – 2 day old mosquitoes in susceptibility assays as recommended by the WHO should facilitate detection of resistance at the stage where the highest rate of the resistance phenotype is present.
High mosquito burden and malaria transmission in a district of the city of Douala, Cameroon
Antonio-Nkondjio Christophe,Defo-Talom Blaise,Tagne-Fotso Romuald,Tene-Fossog Billy
BMC Infectious Diseases , 2012, DOI: 10.1186/1471-2334-12-275
Abstract: Background Rapid demographic growth in Douala city, Cameroon, has resulted in profound ecological and environmental changes. Although demographic changes can affect anopheline mosquito breeding sites, there is a lack of understanding about the epidemiological impact that such changes might have on vector ecology and malaria transmission. Methods A 12-month entomological study was conducted in a highly populated district of Douala called Ndogpassi. Adult mosquitoes were collected using two methods: 1) human landing catches (HLC); and 2) Centers for Disease Control and Prevention (CDC) light traps; these methods were used twice monthly from January to December 2011. Mosquito genus and species were identified with morphological and molecular diagnostic tools. The sampling efficiency of the CDC light trap and HLC were compared. Anopheles gambiae infection with Plasmodium falciparum was detected using ELISA. Susceptibility to DDT, permethrin, and deltamethrin insecticides were also determined. Results A total of 6923 mosquitoes were collected by HLC (5198) and CDC light traps (1725). There was no equivalence in the sampling efficiency between light traps and human landing catches (P > 0.01). With 51% of the total, Culex was the most common, followed by Anopheles (26.14%), Mansonia (22.7%) and Aedes (0.1%). An. gambiae ss (M form) comprised ~98% of the total anophelines collected. An. gambiae had a biting rate of 0.25 to 49.25 bites per human per night, and was the only species found to be infected with P. falciparum. A P. falciparum infection rate of 0.5% was calculated (based on enzyme-linked immunosorbent assays using the circumsporozoite surface protein). The entomological inoculation rate was estimated at 31 infective bites per annum. Insecticide susceptibility tests on An. gambiae females revealed a mortality rate of 33%, 76% and 98% for DDT, permethrin and deltamethrin, respectively. The West African kdr allele (L1014F) was detected in 38 of the 61 An. gambiae analyzed (62.3%). Conclusions The present study revealed seasonal malaria transmission in Douala. High levels of An. gambiae were detected along with a high prevalence of insecticide resistance in this vector population. These findings highlight the need to promote use of insecticide-impregnated bed nets in Douala.
Page 1 /580
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.