Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 50 )

2019 ( 207 )

2018 ( 273 )

2017 ( 247 )

Custom range...

Search Results: 1 - 10 of 136946 matches for " Alexander T. Ihler "
All listed articles are free for downloading (OA Articles)
Page 1 /136946
Display every page Item
Accuracy Bounds for Belief Propagation
Alexander T. Ihler
Computer Science , 2012,
Abstract: The belief propagation (BP) algorithm is widely applied to perform approximate inference on arbitrary graphical models, in part due to its excellent empirical properties and performance. However, little is known theoretically about when this algorithm will perform well. Using recent analysis of convergence and stability properties in BP and new results on approximations in binary systems, we derive a bound on the error in BP's estimates for pairwise Markov random fields over discrete valued random variables. Our bound is relatively simple to compute, and compares favorably with a previous method of bounding the accuracy of BP.
Variational Algorithms for Marginal MAP
Qiang Liu,Alexander T. Ihler
Mathematics , 2012,
Abstract: Marginal MAP problems are notoriously difficult tasks for graphical models. We derive a general variational framework for solving marginal MAP problems, in which we apply analogues of the Bethe, tree-reweighted, and mean field approximations. We then derive a "mixed" message passing algorithm and a convergent alternative using CCCP to solve the BP-type approximations. Theoretically, we give conditions under which the decoded solution is a global or local optimum, and obtain novel upper bounds on solutions. Experimentally we demonstrate that our algorithms outperform related approaches. We also show that EM and variational EM comprise a special case of our framework.
Negative Tree Reweighted Belief Propagation
Qiang Liu,Alexander T. Ihler
Computer Science , 2012,
Abstract: We introduce a new class of lower bounds on the log partition function of a Markov random field which makes use of a reversed Jensen's inequality. In particular, our method approximates the intractable distribution using a linear combination of spanning trees with negative weights. This technique is a lower-bound counterpart to the tree-reweighted belief propagation algorithm, which uses a convex combination of spanning trees with positive weights to provide corresponding upper bounds. We develop algorithms to optimize and tighten the lower bounds over the non-convex set of valid parameter values. Our algorithm generalizes mean field approaches (including naive and structured mean field approximations), which it includes as a limiting case.
Belief Propagation for Structured Decision Making
Qiang Liu,Alexander T. Ihler
Computer Science , 2012,
Abstract: Variational inference algorithms such as belief propagation have had tremendous impact on our ability to learn and use graphical models, and give many insights for developing or understanding exact and approximate inference. However, variational approaches have not been widely adoped for decision making in graphical models, often formulated through influence diagrams and including both centralized and decentralized (or multi-agent) decisions. In this work, we present a general variational framework for solving structured cooperative decision-making problems, use it to propose several belief propagation-like algorithms, and analyze them both theoretically and empirically.
A Low Density Lattice Decoder via Non-Parametric Belief Propagation
Danny Bickson,Alexander T. Ihler,Danny Dolev
Mathematics , 2009, DOI: 10.1109/ALLERTON.2009.5394798
Abstract: The recent work of Sommer, Feder and Shalvi presented a new family of codes called low density lattice codes (LDLC) that can be decoded efficiently and approach the capacity of the AWGN channel. A linear time iterative decoding scheme which is based on a message-passing formulation on a factor graph is given. In the current work we report our theoretical findings regarding the relation between the LDLC decoder and belief propagation. We show that the LDLC decoder is an instance of non-parametric belief propagation and further connect it to the Gaussian belief propagation algorithm. Our new results enable borrowing knowledge from the non-parametric and Gaussian belief propagation domains into the LDLC domain. Specifically, we give more general convergence conditions for convergence of the LDLC decoder (under the same assumptions of the original LDLC convergence analysis). We discuss how to extend the LDLC decoder from Latin square to full rank, non-square matrices. We propose an efficient construction of sparse generator matrix and its matching decoder. We report preliminary experimental results which show our decoder has comparable symbol to error rate compared to the original LDLC decoder.%
Planar Cycle Covering Graphs
Julian Yarkony,Alexander T. Ihler,Charless C. Fowlkes
Computer Science , 2011,
Abstract: We describe a new variational lower-bound on the minimum energy configuration of a planar binary Markov Random Field (MRF). Our method is based on adding auxiliary nodes to every face of a planar embedding of the graph in order to capture the effect of unary potentials. A ground state of the resulting approximation can be computed efficiently by reduction to minimum-weight perfect matching. We show that optimization of variational parameters achieves the same lower-bound as dual-decomposition into the set of all cycles of the original graph. We demonstrate that our variational optimization converges quickly and provides high-quality solutions to hard combinatorial problems 10-100x faster than competing algorithms that optimize the same bound.
Fast Planar Correlation Clustering for Image Segmentation
Julian Yarkony,Alexander T. Ihler,Charless C. Fowlkes
Computer Science , 2012,
Abstract: We describe a new optimization scheme for finding high-quality correlation clusterings in planar graphs that uses weighted perfect matching as a subroutine. Our method provides lower-bounds on the energy of the optimal correlation clustering that are typically fast to compute and tight in practice. We demonstrate our algorithm on the problem of image segmentation where this approach outperforms existing global optimization techniques in minimizing the objective and is competitive with the state of the art in producing high-quality segmentations.
A Cluster-Cumulant Expansion at the Fixed Points of Belief Propagation
Max Welling,Andrew E. Gelfand,Alexander T. Ihler
Computer Science , 2012,
Abstract: We introduce a new cluster-cumulant expansion (CCE) based on the fixed points of iterative belief propagation (IBP). This expansion is similar in spirit to the loop-series (LS) recently introduced in [1]. However, in contrast to the latter, the CCE enjoys the following important qualities: 1) it is defined for arbitrary state spaces 2) it is easily extended to fixed points of generalized belief propagation (GBP), 3) disconnected groups of variables will not contribute to the CCE and 4) the accuracy of the expansion empirically improves upon that of the LS. The CCE is based on the same M\"obius transform as the Kikuchi approximation, but unlike GBP does not require storing the beliefs of the GBP-clusters nor does it suffer from convergence issues during belief updating.
Tightening MRF Relaxations with Planar Subproblems
Julian Yarkony,Ragib Morshed,Alexander T. Ihler,Charless C. Fowlkes
Computer Science , 2012,
Abstract: We describe a new technique for computing lower-bounds on the minimum energy configuration of a planar Markov Random Field (MRF). Our method successively adds large numbers of constraints and enforces consistency over binary projections of the original problem state space. These constraints are represented in terms of subproblems in a dual-decomposition framework that is optimized using subgradient techniques. The complete set of constraints we consider enforces cycle consistency over the original graph. In practice we find that the method converges quickly on most problems with the addition of a few subproblems and outperforms existing methods for some interesting classes of hard potentials.
Gibbs Sampling for (Coupled) Infinite Mixture Models in the Stick Breaking Representation
Ian Porteous,Alexander T. Ihler,Padhraic Smyth,Max Welling
Computer Science , 2012,
Abstract: Nonparametric Bayesian approaches to clustering, information retrieval, language modeling and object recognition have recently shown great promise as a new paradigm for unsupervised data analysis. Most contributions have focused on the Dirichlet process mixture models or extensions thereof for which efficient Gibbs samplers exist. In this paper we explore Gibbs samplers for infinite complexity mixture models in the stick breaking representation. The advantage of this representation is improved modeling flexibility. For instance, one can design the prior distribution over cluster sizes or couple multiple infinite mixture models (e.g. over time) at the level of their parameters (i.e. the dependent Dirichlet process model). However, Gibbs samplers for infinite mixture models (as recently introduced in the statistics literature) seem to mix poorly over cluster labels. Among others issues, this can have the adverse effect that labels for the same cluster in coupled mixture models are mixed up. We introduce additional moves in these samplers to improve mixing over cluster labels and to bring clusters into correspondence. An application to modeling of storm trajectories is used to illustrate these ideas.
Page 1 /136946
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.