oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 550 )

2018 ( 739 )

2017 ( 722 )

2016 ( 1001 )

Custom range...

Search Results: 1 - 10 of 402885 matches for " Adly M. M. Abd-Alla "
All listed articles are free for downloading (OA Articles)
Page 1 /402885
Display every page Item
Tsetse Salivary Gland Hypertrophy Virus: Hope or Hindrance for Tsetse Control?
Adly M. M. Abd-Alla ,Andrew G. Parker,Marc J. B. Vreysen,Max Bergoin
PLOS Neglected Tropical Diseases , 2011, DOI: 10.1371/journal.pntd.0001220
Abstract: Many species of tsetse flies (Diptera: Glossinidae) are infected with a virus that causes salivary gland hypertrophy (SGH), and flies with SGH symptoms have a reduced fecundity and fertility. The prevalence of SGH in wild tsetse populations is usually very low (0.2%–5%), but higher prevalence rates (15.2%) have been observed occasionally. The successful eradication of a Glossina austeni population from Unguja Island (Zanzibar) using an area-wide integrated pest management approach with a sterile insect technique (SIT) component (1994–1997) encouraged several African countries, including Ethiopia, to incorporate the SIT in their national tsetse control programs. A large facility to produce tsetse flies for SIT application in Ethiopia was inaugurated in 2007. To support this project, a Glossina pallidipes colony originating from Ethiopia was successfully established in 1996, but later up to 85% of adult flies displayed symptoms of SGH. As a result, the colony declined and became extinct by 2002. The difficulties experienced with the rearing of G. pallidipes, epitomized by the collapse of the G. pallidipes colony originating from Ethiopia, prompted the urgent need to develop management strategies for the salivary gland hypertrophy virus (SGHV) for this species. As a first step to identify suitable management strategies, the virus isolated from G. pallidipes (GpSGHV) was recently sequenced and research was initiated on virus transmission and pathology. Different approaches to prevent virus replication and its horizontal transmission during blood feeding have been proposed. These include the use of antiviral drugs such as acyclovir and valacyclovir added to the blood for feeding or the use of antibodies against SGHV virion proteins. In addition, preliminary attempts to silence the expression of an essential viral protein using RNA interference will be discussed.
The Antiviral Drug Valacyclovir Successfully Suppresses Salivary Gland Hypertrophy Virus (SGHV) in Laboratory Colonies of Glossina pallidipes
Adly M.M. Abd-Alla, Henry Adun, Andrew G. Parker, Marc J.B. Vreysen, Max Bergoin
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038417
Abstract: Many species of tsetse flies are infected with a virus that causes salivary gland hypertrophy (SGH) symptoms associated with a reduced fecundity and fertility. A high prevalence of SGH has been correlated with the collapse of two laboratory colonies of Glossina pallidipes and colony maintenance problems in a mass rearing facility in Ethiopia. Mass-production of G. pallidipes is crucial for programs of tsetse control including the sterile insect technique (SIT), and therefore requires a management strategy for this virus. Based on the homology of DNA polymerase between salivary gland hypertrophy virus and herpes viruses at the amino acid level, two antiviral drugs, valacyclovir and acyclovir, classically used against herpes viruses were selected and tested for their toxicity on tsetse flies and their impact on virus replication. While long term per os administration of acyclovir resulted in a significant reduction of productivity of the colonies, no negative effect was observed in colonies fed with valacyclovir-treated blood. Furthermore, treatment of a tsetse colony with valacyclovir for 83 weeks resulted in a significant reduction of viral loads and consequently suppression of SGH symptoms. The combination of initial selection of SGHV-negative flies by non-destructive PCR, a clean feeding system, and valacyclovir treatment resulted in a colony that was free of SGH syndromes in 33 weeks. This is the first report of the use of a drug to control a viral infection in an insect and of the demonstration that valacyclovir can be used to suppress SGH in colonies of G. pallidipes.
The Salivary Secretome of the Tsetse Fly Glossina pallidipes (Diptera: Glossinidae) Infected by Salivary Gland Hypertrophy Virus
Henry M. Kariithi,Ikbal A. Ince,Sjef Boeren,Adly M. M. Abd-Alla,Andrew G. Parker,Serap Aksoy,Just M. Vlak ,Monique M. van Oers
PLOS Neglected Tropical Diseases , 2011, DOI: 10.1371/journal.pntd.0001371
Abstract: Background The competence of the tsetse fly Glossina pallidipes (Diptera; Glossinidae) to acquire salivary gland hypertrophy virus (SGHV), to support virus replication and successfully transmit the virus depends on complex interactions between Glossina and SGHV macromolecules. Critical requisites to SGHV transmission are its replication and secretion of mature virions into the fly's salivary gland (SG) lumen. However, secretion of host proteins is of equal importance for successful transmission and requires cataloging of G. pallidipes secretome proteins from hypertrophied and non-hypertrophied SGs. Methodology/Principal Findings After electrophoretic profiling and in-gel trypsin digestion, saliva proteins were analyzed by nano-LC-MS/MS. MaxQuant/Andromeda search of the MS data against the non-redundant (nr) GenBank database and a G. morsitans morsitans SG EST database, yielded a total of 521 hits, 31 of which were SGHV-encoded. On a false discovery rate limit of 1% and detection threshold of least 2 unique peptides per protein, the analysis resulted in 292 Glossina and 25 SGHV MS-supported proteins. When annotated by the Blast2GO suite, at least one gene ontology (GO) term could be assigned to 89.9% (285/317) of the detected proteins. Five (~1.8%) Glossina and three (~12%) SGHV proteins remained without a predicted function after blast searches against the nr database. Sixty-five of the 292 detected Glossina proteins contained an N-terminal signal/secretion peptide sequence. Eight of the SGHV proteins were predicted to be non-structural (NS), and fourteen are known structural (VP) proteins. Conclusions/Significance SGHV alters the protein expression pattern in Glossina. The G. pallidipes SG secretome encompasses a spectrum of proteins that may be required during the SGHV infection cycle. These detected proteins have putative interactions with at least 21 of the 25 SGHV-encoded proteins. Our findings opens venues for developing novel SGHV mitigation strategies to block SGHV infections in tsetse production facilities such as using SGHV-specific antibodies and phage display-selected gut epithelia-binding peptides.
Virology, Epidemiology and Pathology of Glossina Hytrosavirus, and Its Control Prospects in Laboratory Colonies of the Tsetse Fly, Glossina pallidipes (Diptera; Glossinidae)
Henry M. Kariithi,Monique M. van Oers,Just M. Vlak,Marc J. B. Vreysen,Andrew G. Parker,Adly M. M. Abd-Alla
Insects , 2013, DOI: 10.3390/insects4030287
Abstract: The Glossina hytrosavirus (family Hytrosaviridae) is a double-stranded DNA virus with rod-shaped, enveloped virions. Its 190 kbp genome encodes 160 putative open reading frames. The virus replicates in the nucleus, and acquires a fragile envelope in the cell cytoplasm. Glossina hytrosavirus was first isolated from hypertrophied salivary glands of the tsetse fly, Glossina pallidipes Austen (Diptera; Glossinidae) collected in Kenya in 1986. A certain proportion of laboratory G. pallidipes flies infected by Glossina hytrosavirus develop hypertrophied salivary glands and midgut epithelial cells, gonadal anomalies and distorted sex-ratios associated with reduced insemination rates, fecundity and lifespan. These symptoms are rare in wild tsetse populations. In East Africa, G. pallidipes is one of the most important vectors of African trypanosomosis, a debilitating zoonotic disease that afflicts 37 sub-Saharan African countries. There is a large arsenal of control tactics available to manage tsetse flies and the disease they transmit. The sterile insect technique (SIT) is a robust control tactic that has shown to be effective in eradicating tsetse populations when integrated with other control tactics in an area-wide integrated approach. The SIT requires production of sterile male flies in large production facilities. To supply sufficient numbers of sterile males for the SIT component against G. pallidipes, strategies have to be developed that enable the management of the Glossina hytrosavirus in the colonies. This review provides a historic chronology of the emergence and biogeography of Glossina hytrosavirus, and includes researches on the infectomics (defined here as the functional and structural genomics and proteomics) and pathobiology of the virus. Standard operation procedures for viral management in tsetse mass-rearing facilities are proposed and a future outlook is sketched.
Transgenerational Transmission of the Glossina pallidipes Hytrosavirus Depends on the Presence of a Functional Symbiome
Drion G. Boucias, Henry M. Kariithi, Kostas Bourtzis, Daniela I. Schneider, Karen Kelley, Wolfgang J. Miller, Andrew G. Parker, Adly M. M. Abd-Alla
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0061150
Abstract: The vertically transmitted endosymbionts (Sodalis glossinidius and Wigglesworthia glossinidia) of the tsetse fly (Diptera: Glossinidae) are known to supplement dietary deficiencies and modulate the reproductive fitness and the defense system of the fly. Some tsetse fly species are also infected with the bacterium, Wolbachia and with the Glossina hytrosavirus (GpSGHV). Laboratory-bred G. pallidipes exhibit chronic asymptomatic and acute symptomatic GpSGHV infection, with the former being the most common in these colonies. However, under as yet undefined conditions, the asymptomatic state can convert to the symptomatic state, leading to detectable salivary gland hypertrophy (SGH+) syndrome. In this study, we investigated the interplay between the bacterial symbiome and GpSGHV during development of G. pallidipes by knocking down the symbionts with antibiotic. Intrahaemocoelic injection of GpSGHV led to high virus titre (109 virus copies), but was not accompanied by either the onset of detectable SGH+, or release of detectable virus particles into the blood meals during feeding events. When the F1 generations of GpSGHV-challenged mothers were dissected within 24 h post-eclosion, SGH+ was observed to increase from 4.5% in the first larviposition cycle to >95% in the fourth cycle. Despite being sterile, these F1 SGH+ progeny mated readily. Removal of the tsetse symbiome, however, suppressed transgenerational transfer of the virus via milk secretions and blocked the ability of GpSGHV to infect salivary glands of the F1 progeny. Whereas GpSGHV infects and replicates in salivary glands of developing pupa, the virus is unable to induce SGH+ within fully differentiated adult salivary glands. The F1 SGH+ adults are responsible for the GpSGHV-induced colony collapse in tsetse factories. Our data suggest that GpSGHV has co-evolved with the tsetse symbiome and that the symbionts play key roles in the virus transmission from mother to progeny.
Managing Hytrosavirus Infections in Glossina pallidipes Colonies: Feeding Regime Affects the Prevalence of Salivary Gland Hypertrophy Syndrome
Adly M. M. Abd-Alla, Henry M. Kariithi, Abdul Hasim Mohamed, Edgardo Lapiz, Andrew G. Parker, Marc J. B. Vreysen
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0061875
Abstract: Many species of tsetse flies are infected by a virus that causes salivary gland hypertrophy (SGH) syndrome and the virus isolated from Glossina pallidipes (GpSGHV) has recently been sequenced. Flies with SGH have a reduced fecundity and fertility. Due to the deleterious impact of SGHV on G. pallidipes colonies, several approaches were investigated to develop a virus management strategy. Horizontal virus transmission is the major cause of the high prevalence of the GpSGHV in tsetse colonies. Implementation of a “clean feeding” regime (fresh blood offered to each set of flies so that there is only one feed per membrane), instead of the regular feeding regime (several successive feeds per membrane), was among the proposed approaches to reduce GpSGHV infections. However, due to the absence of disposable feeding equipment (feeding trays and silicone membranes), the implementation of a clean feeding approach remains economically difficult. We developed a new clean feeding approach applicable to large-scale tsetse production facilities using existing resources. The results indicate that implementing this approach is feasible and leads to a significant reduction in virus load from 109 virus copies in regular colonies to an average of 102.5 and eliminates the SGH syndrome from clean feeding colonies by28 months post implementation of this approach. The clean feeding approach also reduced the virus load from an average of 108 virus copy numbers to an average of 103 virus copies and SGH prevalence of 10% to 4% in flies fed after the clean fed colony. Taken together, these data indicate that the clean feeding approach is applicable in large-scale G. pallidipes production facilities and eliminates the deleterious effects of the virus and the SGH syndrome in these colonies.
Impact of Salivary Gland Hypertrophy Virus Infection on the Mating Success of Male Glossina pallidipes: Consequences for the Sterile Insect Technique
Gratian N. Mutika, Carmen Marin, Andrew G. Parker, Drion G. Boucias, Marc J. B. Vreysen, Adly M. M. Abd-Alla
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0042188
Abstract: Many species of tsetse flies are infected by a virus (GpSGHV) that causes salivary gland hypertrophy (SGH). Female Glossina pallidipes (Austen) with SGH symptoms (SGH+) have reduced fecundity and SGH+ male G. pallidipes are unable to inseminate female flies. Consequently, G. pallidipes laboratory colonies with a high prevalence of SGH have been difficult to maintain and have collapsed on several occasions. To assess the potential impact of the release of SGH+ sterile male G. pallidipes on the efficacy of an integrated control programme with a sterile insect technique (SIT) component, we examined the mating efficiency and behaviour of male G. pallidipes in field cages in relation to SGH prevalence. The results showed in a field cage setting a significantly reduced mating frequency of 19% for a male G. pallidipes population with a high prevalence of SGH (83%) compared to 38% for a male population with a low prevalence of SGH (7%). Premating period and mating duration did not vary significantly with SGH status. A high percentage (>80%) of females that had mated with SGH+ males had empty spermathecae. The remating frequency of female G. pallidipes was very low irrespective of the SGH status of the males in the first mating. These results indicate that a high prevalence of SGH+ in G. pallidipes not only affects colony stability and performance but, in view of their reduced mating propensity and competitiveness, releasing SGH+ sterile male G. pallidipes will reduce the efficiency of a sterile male release programme.
Effect of Initial Stress on Wave Frequencies of Elastic Solid with Rotation  [PDF]
G. A. Yahya, S. H. Elhag, M. F. Sanaa, A. M. A. Amry, A. M. Abd-Alla
Journal of Modern Physics (JMP) , 2014, DOI: 10.4236/jmp.2014.518197
Abstract: In this paper, the effect of initial stress on the radial vibrations of elastic hollow cylinder with rotation is discussed. The one-dimensional equation of elastodynamic is solved in terms of radial displacement. The frequency equation is obtained when the boundaries are free; fixed and mixed boundary condition is examined numerically. The determination is concerned with the eigenvalues of the natural frequency of the radial vibrations in the case of harmonic vibrations. The effect of rotation and initial stress on the natural frequencies was examined. It was shown that the dispersion curves of guided waves were significantly influenced by the rotation and initial stress of the elastic cylinder. Numerical results are given and illustrated graphically for each case considered. The results indicate that the effect of rotation and initial stress are very pronounced.
Rayleigh Waves in Generalized Magneto-Thermo-Viscoelastic Granular Medium under the Influence of Rotation, Gravity Field, and Initial Stress
A. M. Abd-Alla,S. M. Abo-Dahab,F. S. Bayones
Mathematical Problems in Engineering , 2011, DOI: 10.1155/2011/763429
Abstract: The surface waves propagation in generalized magneto-thermo-viscoelastic granular medium subjected to continuous boundary conditions has been investigated. In addition, it is also subjected to thermal boundary conditions. The solution of the more general equations are obtained for thermoelastic coupling. The frequency equation of Rayleigh waves is obtained in the form of a determinant containing a term involving the coefficient of friction of a granular media which determines Rayleigh waves velocity as a real part and the attenuation coefficient as an imaginary part, and the effects of rotation, magnetic field, initial stress, viscosity, and gravity field on Rayleigh waves velocity and attenuation coefficient of surface waves have been studied in detail. Dispersion curves are computed numerically for a specific model and presented graphically. Some special cases have also been deduced. The results indicate that the effect of rotation, magnetic field, initial stress, and gravity field is very pronounced.
Protease-producing microorganisms inhabiting salted fish (Moloha) with special reference to protease activity of Bacillus subtilis
M. H. Abd-Alla,S. A. Omar,M. A. El-Nagdy
Acta Societatis Botanicorum Poloniae , 1994, DOI: 10.5586/asbp.1994.042
Abstract: The investigation was designed to isolate and identify the proteolytic microorganisms inhabiting salted fish. Bacillus subtilis was chosen as the most promising protease producer. Some properties of the crude protease are presented, the effect of metal ions on protease production has been studied. It was shown that Ca2+ and Mg2+ stimulated, while Co2+ , Zn2+ and Cu2+ inhibited the enzyme production. The effect of temperature and pH and salt tolerance have also been studied. Protease activity was stable in 25% NaCl. The favourable characteristics of the enzyme might have extensive application in laundry detergents and in tanning industry.
Page 1 /402885
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.