Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 6 )

2019 ( 652 )

2018 ( 817 )

2017 ( 752 )

Custom range...

Search Results: 1 - 10 of 461857 matches for " A. Sollima "
All listed articles are free for downloading (OA Articles)
Page 1 /461857
Display every page Item
Globular clusters in modified Newtonian dynamics: velocity-dispersion profiles from self-consistent models
A. Sollima,C. Nipoti
Physics , 2009, DOI: 10.1111/j.1365-2966.2009.15682.x
Abstract: We test the modified Newtonian dynamics (MOND) theory with the velocity-dispersion profiles of Galactic globular clusters populating the outermost region of the Milky Way halo, where the Galactic acceleration is lower than the characteristic MOND acceleration a_0. For this purpose, we constructed self-consistent, spherical models of stellar systems in MOND, which are the analogues of the Newtonian King models. The models are spatially limited, reproduce well the surface-brightness profiles of globular clusters, and have velocity-dispersion profiles that differ remarkably in shape from the corresponding Newtonian models. We present dynamical models of six globular clusters, which can be used to efficiently test MOND with the available observing facilities. A comparison with recent spectroscopic data obtained for NGC2419 suggests that the kinematics of this cluster might be hard to explain in MOND.
Treatment of realistic tidal field in Monte Carlo simulations of star clusters
A. Sollima,A. Mastrobuono Battisti
Physics , 2014, DOI: 10.1093/mnras/stu1426
Abstract: We present a new implementation of the Monte Carlo method to simulate the evolution of star clusters. The major improvement with respect to the previously developed codes is the treatment of the external tidal field taking into account for both the loss of stars from the cluster boundary and the disk/bulge shocks. We provide recipes to handle with eccentric orbits in complex galactic potentials. The first calculations for stellar systems containing 21000 and 42000 equal-mass particles show good agreement with direct N-body simulations in terms of the evolution of both the enclosed mass and the Lagrangian radii provided that the mass-loss rate does not exceed a critical value.
A comparison between the stellar and dynamical masses of six globular clusters
A. Sollima,M. Bellazzini,J. -W. Lee
Physics , 2012, DOI: 10.1088/0004-637X/755/2/156
Abstract: We present the results of a comprehensive analysis of the structure and kinematics of six Galactic globular clusters. By comparing the results of the most extensive photometric and kinematical surveys available to date with suited dynamical models, we determine the stellar and dynamical masses of these stellar systems taking into account for the effect of mass segregation, anisotropy and unresolved binaries. We show that the stellar masses of these clusters are on average smaller than those predicted by canonical integrated stellar evolution models because of the shallower slope of their mass functions. The derived stellar masses are found to be also systematically smaller than the dynamical masses by ~40%, although the presence of systematics affecting our estimates cannot be excluded. If confirmed, this evidence can be linked to an increased fraction of retained dark remnants or to the presence of a modest amount of dark matter.
The population of variable stars in M54 (NGC6715)
A. Sollima,C. Cacciari,M. Bellazzini,S. Colucci
Physics , 2010, DOI: 10.1111/j.1365-2966.2010.16711.x
Abstract: We present new B, V and I CCD time-series photometry for 177 variable stars in a 13'X 13' field centered on the globular cluster M54 (lying at the center of the Sagittarius dwarf spheroidal galaxy), 94 of which are newly identified variables. The total sample is composed of 2 anomalous Cepheids, 144 RR Lyrae stars (108 RR0 and 36 RR1), 3 SX Phoenicis, 7 eclipsing binaries (5 W UMA and 2 Algol binaries), 3 variables of uncertain classification and 18 long-period variables. The large majority of the RR Lyrae variables likely belong to M54. Ephemerides are provided for all the observed short-period variables. The pulsational properties of the M54 RR Lyrae variables are close to those of Oosterhoff I clusters, but a significant number of long-period ab type RR Lyrae are present. We use the observed properties of the RR Lyrae to estimate the reddening and the distance modulus of M54, E(B-V)=0.16 +/- 0.02 and (m-M)_0=17.13 +/- 0.11, respectively, in excellent agreement with the most recent estimates. The metallicity has been estimated for a subset of 47 RR Lyrae stars, with especially good quality light curves, from the Fourier parameters of the V light curve. The derived metallicity distribution has a symmetric bell shape, with a mean of <[Fe/H]>=-1.65 and a standard deviation sigma=0.16 dex. Seven stars have been identified as likely belonging to the Sagittarius galaxy, based on their too high or too low metallicity. This evidence, if confirmed, might suggest that old stars in this galaxy span a wide range of metallicities.
The Luminosity Function and stellar Mass to Light ratio of the massive globular cluster NGC2419
M. Bellazzini,E. Dalessandro,A. Sollima,R. Ibata
Physics , 2012, DOI: 10.1111/j.1365-2966.2012.20922.x
Abstract: We used archival Hubble Space Telescope WFC3 images to obtain the Luminosity Function of the remote globular cluster NGC2419 from two magnitudes above the Horizontal Branch level down to \sim3.0 magnitudes below the Turn Off point (to M_I\sim6.4), approximately covering the range of initial stellar masses 0.5 M_sun<= m <= 0.9 M_sun. The completeness-corrected Luminosity Function does not display any change of shape over the radial range covered by the WFC3 data, out to ~6 core radii (r_c), or, equivalently, to ~2 half-light radii. The Luminosity Function in this radial range is also identical to that obtained from ground based data at much larger distances from the cluster centre (12r_c<= R<= 22r_c), in the magnitude range in which the two distributions overlap (M_I<= 4.0). These results support the conclusion by Dalessandro et al. that there is no significant mass segregation among cluster stars, hence the stellar mass-to-light ratio remains constant with distance from the cluster centre. We fitted the observed Luminosity Function with theoretical counterparts with the proper age and metallicity from different sets of stellar evolution models and we consistently derive a total V band mass-to-light ratio 1.2<= M/L_V<= 1.7, by extrapolating to the Hydrogen burning limit, with a best-fit value M/L_V=1.5 +/- 0.1. On the other hand, assuming that there are no cluster stars with m<= 0.3 M_sun, we establish a robust lower limit M/L_V> 0.8. These estimates provide useful constraints for dynamical models of the cluster that were forced to consider the stellar mass-to-light ratio as a (nearly) free parameter.
A stellar population synthesis approach to the Oosterhoff dichotomy
A. Sollima,S. Cassisi,G. Fiorentino,R. G. Gratton
Physics , 2014, DOI: 10.1093/mnras/stu1564
Abstract: We use color-magnitude diagram synthesis together with theoretical relations from non-linear pulsation models to approach the long-standing problem of the Oosterhoff dichotomy related to the distribution of the mean periods of fundamental RR Lyrae variables in globular clusters. By adopting the chemical composition determined from spectroscopic observations and a criterion to account for the hysteresis mechanism, we tuned age and mass-loss to simultaneously reproduce the morphology of both the turn-off and the Horizontal Branch of a sample of 17 globular clusters of the Milky Way and of nearby dwarf galaxies in the crucial metallicity range (-1.9<[Fe/H]<-1.4) where the Oostheroff transition is apparent. We find that the Oosterhoff dichotomy among Galactic globular clusters is naturally reproduced by models. The analysis of the relative impact of the various involved parameters indicates that the main responsibles of the dichotomy are the peculiar distribution of clusters in the age-metallicity plane and the hysteresis. In particular, there is a clear connection between the two main branches of the age-metallicity relation for Galactic globular clusters and the Oosterhoff groups. The properties of clusters' RR Lyrae belonging to other Oostheroff groups (OoInt and OoIII) are instead not well reproduced. While for OoIII clusters a larger helium abundance for a fraction of the cluster's stars can reconcile the model prediction with observations, some other parameter affecting both the Horizontal Branch morphology and the RR Lyrae periods is required to reproduce the behavior of OoInt clusters.
Resolved photometry of Young Massive Clusters in the starburst galaxy NGC 4214
A. Sollima,M. Cignoni,R. G. Gratton,M. Tosi,A. Bragaglia,S. Lucatello,G. Meurer
Physics , 2013, DOI: 10.1093/mnras/stt2022
Abstract: We present the results of deep high resolution imaging performed with ACS/HRC@HST in the most active region of the nearby starburst galaxy NGC 4214. We resolved the stellar populations of five Young Massive Clusters and their surrounding galactic field. The star formation history of this region is characterized by two main bursts occurred within the last 500 Myr, with the oldest episode spread out across an area larger than that covered by the most recent one. The ages derived for the analysed clusters cover a wide range between 6.4
A Monte Carlo analysis of the velocity dispersion of the globular cluster Palomar 14
A. Sollima,C. Nipoti,A. Mastrobuono Battisti,M. Montuori,R. Capuzzo-Dolcetta
Physics , 2011, DOI: 10.1088/0004-637X/744/2/196
Abstract: We present the results of a detailed analysis of the projected velocity dispersion of the globular cluster Palomar 14 performed using recent high-resolution spectroscopic data and extensive Monte Carlo simulations. The comparison between the data and a set of dynamical models (differing in fraction of binaries, degree of anisotropy, mass-to-light ratio M/L, cluster orbit and theory of gravity) shows that the observed velocity dispersion of this stellar system is well reproduced by Newtonian models with a fraction of binaries f_b<30% and a M/L compatible with the predictions of stellar evolution models. Instead, models computed with a large fraction of binaries systematically overestimate the cluster velocity dispersion. We also show that, across the parameter space sampled by our simulations, models based on the Modified Newtonian Dynamics theory can be reconciled with observations only assuming values of M/L lower than those predicted by stellar evolution models under standard assumptions.
Infrared photometry of Young Massive Clusters in the starburst galaxy NGC 4214
A. Sollima,R. G. Gratton,E. Carretta,A. Bragaglia,S. Lucatello
Physics , 2013, DOI: 10.1093/mnras/stt805
Abstract: We present the results of an infrared photometric survey performed with NICS@TNG in the nearby starburst galaxy NGC 4214. We derived accurate integrated JK magnitudes of 10 young massive clusters and compared them with the already available Hubble Space Telescope ultraviolet colors. These clusters are located in the combined ultraviolet-infrared colors planes on well defined sequences, whose shapes allow a precise determination of their age. By means of the comparison with suitable stellar evolution models we estimated ages, metallicities, reddening and masses of these clusters. All the analyzed clusters appear to be younger than log(t/yr)<8.4, moderately metal-rich and slightly less massive than present-day Galactic globular clusters. The derived ages for clusters belonging to the secondary HII star forming complex are significantly larger than those previously estimated in the literature. We also discuss the possibility of using the ultraviolet-infrared color-color diagram to select candidate young massive clusters hosting multiple stellar populations.
Spectroscopy of Red Giants in the globular cluster Terzan 8: kinematics and evidence for the surrounding Sagittarius stream
A. Sollima,E. Carretta,V. D'Orazi,R. G. Gratton,A. Bragaglia,S. Lucatello
Physics , 2014, DOI: 10.1093/mnras/stu1264
Abstract: We present the results of a spectroscopic survey of Red Giants in the globular cluster Terzan 8 with the aim of studying its kinematics. We derived accurate radial velocities for 82 stars located in the innermost 7 arcmin from the cluster center identifying 48 bona fide cluster members. The kinematics of the cluster have been compared with a set of dynamical models accounting for the effect of mass segregation and a variable fraction of binaries. The derived velocity dispersion appears to be larger than that predicted for mass-segregated stellar systems without binaries, indicating that either the cluster is dynamically young or it contains a large fraction of binaries (>30%). We detected 7 stars with a radial velocity compatible with the cluster systemic velocity but with chemical patterns which stray from those of both the cluster and the Galactic field. These stars are likely members of the Sagittarius stream surrounding this stellar system.
Page 1 /461857
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.