oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 12 )

2019 ( 697 )

2018 ( 818 )

2017 ( 752 )

Custom range...

Search Results: 1 - 10 of 461897 matches for " A. Hatzikoutelis "
All listed articles are free for downloading (OA Articles)
Page 1 /461897
Display every page Item
Opportunities for Neutrino Physics at the Spallation Neutron Source: A White Paper
A. Bolozdynya,F. Cavanna,Y. Efremenko,G. T. Garvey,V. Gudkov,A. Hatzikoutelis,W. R. Hix,W. C. Louis,J. M. Link,D. M. Markoff,G. B. Mills,K. Patton,H. Ray,K. Scholberg,R. G. Van de Water,C. Virtue,D. H. White,S. Yen,J. Yoo
Physics , 2012,
Abstract: The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this document, the product of a workshop at the SNS in May 2012, we describe this free, high-quality stopped-pion neutrino source and outline various physics that could be done using it. We describe without prioritization some specific experimental configurations that could address these physics topics.
The Physics and Nuclear Nonproliferation Goals of WATCHMAN: A WAter CHerenkov Monitor for ANtineutrinos
M. Askins,M. Bergevin,A. Bernstein,S. Dazeley,S. T. Dye,T. Handler,A. Hatzikoutelis,D. Hellfeld,P. Jaffke,Y. Kamyshkov,B. J. Land,J. G. Learned,P. Marleau,C. Mauger,G. D. Orebi Gann,C. Roecker,S. D. Rountree,T. M. Shokair,M. B. Smy,R. Svoboda,M. Sweany,M. R. Vagins,K. A. van Bibber,R. B. Vogelaar,M. J. Wetstein,M. Yeh
Physics , 2015,
Abstract: This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the project's nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods.
Coherent Scattering Investigations at the Spallation Neutron Source: a Snowmass White Paper
D. Akimov,A. Bernstein,P. Barbeau,P. Barton,A. Bolozdynya,B. Cabrera-Palmer,F. Cavanna,V. Cianciolo,J. Collar,R. J. Cooper,D. Dean,Y. Efremenko,A. Etenko,N. Fields,M. Foxe,E. Figueroa-Feliciano,N. Fomin,F. Gallmeier,I. Garishvili,M. Gerling,M. Green,G. Greene,A. Hatzikoutelis,R. Henning,R. Hix,D. Hogan,D. Hornback,I. Jovanovic,T. Hossbach,E. Iverson,S. R. Klein,A. Khromov,J. Link,W. Louis,W. Lu,C. Mauger,P. Marleau,D. Markoff,R. D. Martin,P. Mueller,J. Newby,J. Orrell,C. O'Shaughnessy,S. Pentilla,K. Patton,A. W. Poon,D. Radford,D. Reyna,H. Ray,K. Scholberg,V. Sosnovtsev,R. Tayloe,K. Vetter,C. Virtue,J. Wilkerson,J. Yoo,C. H. Yu
Physics , 2013,
Abstract: The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, Tennessee, provides an intense flux of neutrinos in the few tens-of-MeV range, with a sharply-pulsed timing structure that is beneficial for background rejection. In this white paper, we describe how the SNS source can be used for a measurement of coherent elastic neutrino-nucleus scattering (CENNS), and the physics reach of different phases of such an experimental program (CSI: Coherent Scattering Investigations at the SNS).
Dark Sectors and New, Light, Weakly-Coupled Particles
R. Essig,J. A. Jaros,W. Wester,P. Hansson Adrian,S. Andreas,T. Averett,O. Baker,B. Batell,M. Battaglieri,J. Beacham,T. Beranek,J. D. Bjorken,F. Bossi,J. R. Boyce,G. D. Cates,A. Celentano,A. S. Chou,R. Cowan,F. Curciarello,H. Davoudiasl,P. deNiverville,R. De Vita,A. Denig,R. Dharmapalan,B. Dongwi,B. D?brich,B. Echenard,D. Espriu,S. Fegan,P. Fisher,G. B. Franklin,A. Gasparian,Y. Gershtein,M. Graham,P. W. Graham,A. Haas,A. Hatzikoutelis,M. Holtrop,I. Irastorza,E. Izaguirre,J. Jaeckel,Y. Kahn,N. Kalantarians,M. Kohl,G. Krnjaic,V. Kubarovsky,H-S. Lee,A. Lindner,A. Lobanov,W. J. Marciano,D. J. E. Marsh,T. Maruyama,D. McKeen,H. Merkel,K. Moffeit,P. Monaghan,G. Mueller,T. K. Nelson,G. R. Neil,M. Oriunno,Z. Pavlovic,S. K. Phillips,M. J. Pivovaroff,R. Poltis,M. Pospelov,S. Rajendran,J. Redondo,A. Ringwald,A. Ritz,J. Ruz,K. Saenboonruang,P. Schuster,M. Shinn,T. R. Slatyer,J. H. Steffen,S. Stepanyan,D. B. Tanner,J. Thaler,M. E. Tobar,N. Toro,A. Upadye,R. Van de Water,B. Vlahovic,J. K. Vogel,D. Walker,A. Weltman,B. Wojtsekhowski,S. Zhang,K. Zioutas
Physics , 2013,
Abstract: Dark sectors, consisting of new, light, weakly-coupled particles that do not interact with the known strong, weak, or electromagnetic forces, are a particularly compelling possibility for new physics. Nature may contain numerous dark sectors, each with their own beautiful structure, distinct particles, and forces. This review summarizes the physics motivation for dark sectors and the exciting opportunities for experimental exploration. It is the summary of the Intensity Frontier subgroup "New, Light, Weakly-coupled Particles" of the Community Summer Study 2013 (Snowmass). We discuss axions, which solve the strong CP problem and are an excellent dark matter candidate, and their generalization to axion-like particles. We also review dark photons and other dark-sector particles, including sub-GeV dark matter, which are theoretically natural, provide for dark matter candidates or new dark matter interactions, and could resolve outstanding puzzles in particle and astro-particle physics. In many cases, the exploration of dark sectors can proceed with existing facilities and comparatively modest experiments. A rich, diverse, and low-cost experimental program has been identified that has the potential for one or more game-changing discoveries. These physics opportunities should be vigorously pursued in the US and elsewhere.
Project X: Physics Opportunities
Andreas S. Kronfeld,Robert S. Tschirhart,Usama Al-Binni,Wolfgang Altmannshofer,Charles Ankenbrandt,Kaladi Babu,Sunanda Banerjee,Matthew Bass,Brian Batell,David V. Baxter,Zurab Berezhiani,Marc Bergevin,Robert Bernstein,Sudeb Bhattacharya,Mary Bishai,Thomas Blum,S. Alex Bogacz,Stephen J. Brice,Joachim Brod,Alan Bross,Michael Buchoff,Thomas W. Burgess,Marcela Carena,Luis A. Castellanos,Subhasis Chattopadhyay,Mu-Chun Chen,Daniel Cherdack,Norman H. Christ,Tim Chupp,Vincenzo Cirigliano,Pilar Coloma,Christopher E. Coppola,Ramanath Cowsik,J. Allen Crabtree,André de Gouvêa,Jean-Pierre Delahaye,Dmitri Denisov,Patrick deNiverville,Ranjan Dharmapalan,Alexander Dolgov,Georgi Dvali,Estia Eichten,Jürgen Engelfried,Phillip D. Ferguson,Tony Gabriel,Avraham Gal,Franz Gallmeier,Kenneth S. Ganezer,Susan Gardner,Douglas Glenzinski,Stephen Godfrey,Elena S. Golubeva,Stefania Gori,Van B. Graves,Geoffrey Greene,Cory L. Griffard,Ulrich Haisch,Thomas Handler,Brandon Hartfiel,Athanasios Hatzikoutelis,Ayman Hawari,Lawrence Heilbronn,James E. Hill,Patrick Huber,David E. Jaffe,Christian Johnson,Yuri Kamyshkov,Daniel M. Kaplan,Boris Kerbikov,Brendan Kiburg,Harold G. Kirk,Andreas Klein,Kyle Knoepfel,Boris Kopeliovich,Vladimir Kopeliovich,Joachim Kopp,Wolfgang Korsch,Graham Kribs,Ronald Lipton,Chen-Yu Liu,Wolfgang Lorenzon,Zheng-Tian Lu,Naomi C. R. Makins,David McKeen,Geoffrey Mills,Michael Mocko,Rabindra Mohapatra,Nikolai V. Mokhov,Guenter Muhrer,Pieter Mumm,David Neuffer,Lev Okun,Mark A. Palmer
Physics , 2013,
Abstract: Part 2 of "Project X: Accelerator Reference Design, Physics Opportunities, Broader Impacts". In this Part, we outline the particle-physics program that can be achieved with Project X, a staged superconducting linac for intensity-frontier particle physics. Topics include neutrino physics, kaon physics, muon physics, electric dipole moments, neutron-antineutron oscillations, new light particles, hadron structure, hadron spectroscopy, and lattice-QCD calculations. Part 1 is available as arXiv:1306.5022 [physics.acc-ph] and Part 3 is available as arXiv:1306.5024 [physics.acc-ph].
Direct Measurement of Backgrounds using Reactor-Off Data in Double Chooz
Y. Abe,C. Aberle,J. C. dos Anjos,J. C. Barriere,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadon,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Erickson,A. Etenko,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,S. M. Fernandes,V. Fischer,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,L. Goodenough,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,S. Habib,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,A. Hourlier,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,Y. Kibe,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. Lopez-Castano,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,M. Meyer,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel
Physics , 2012, DOI: 10.1103/PhysRevD.87.011102
Abstract: Double Chooz is unique among modern reactor-based neutrino experiments studying $\bar \nu_e$ disappearance in that data can be collected with all reactors off. In this paper, we present data from 7.53 days of reactor-off running. Applying the same selection criteria as used in the Double Chooz reactor-on oscillation analysis, a measured background rate of 1.0$\pm$0.4 events/day is obtained. The background model for accidentals, cosmogenic $\beta$-$n$-emitting isotopes, fast neutrons from cosmic muons, and stopped-$\mu$ decays used in the oscillation analysis is demonstrated to be correct within the uncertainties. Kinematic distributions of the events, which are dominantly cosmic-ray-produced correlated-background events, are provided. The background rates are scaled to the shielding depths of two other reactor-based oscillation experiments, Daya Bay and RENO.
First Measurement of θ_13 from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment
Double Chooz Collaboration,Y. Abe,C. Aberle,J. C. dos Anjos,J. C. Barriere,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadón,K. Crum,A. Cucoanes,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Erickson,A. Etenko,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,S. M. Fernandes,V. Fischer,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,L. Goodenough,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,S. Habib,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,A. Hourlier,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. López-Casta?o,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,M. Meyer,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel
Statistics , 2013, DOI: 10.1016/j.physletb.2013.04.050
Abstract: The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\sin^2 2\theta_{13}=0.097\pm 0.034(stat.) \pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \sigma. This result is consistent with previous measurements of $\sin^2 2\theta_{13}$.
Reactor electron antineutrino disappearance in the Double Chooz experiment
Y. Abe,C. Aberle,J. C. dos Anjos,J. C. Barriere,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadón,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Etenko,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. Goger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,A. Hourlier,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,Y. Kibe,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. López-Castan?,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel,J. Reichenbacher,B. Reinhold,A. Remoto,M. Rohling,R. Roncin,S. Roth
Statistics , 2012, DOI: 10.1103/PhysRevD.86.052008
Abstract: The Double Chooz experiment has observed 8,249 candidate electron antineutrino events in 227.93 live days with 33.71 GW-ton-years (reactor power x detector mass x livetime) exposure using a 10.3 cubic meter fiducial volume detector located at 1050 m from the reactor cores of the Chooz nuclear power plant in France. The expectation in case of theta13 = 0 is 8,937 events. The deficit is interpreted as evidence of electron antineutrino disappearance. From a rate plus spectral shape analysis we find sin^2 2{\theta}13 = 0.109 \pm 0.030(stat) \pm 0.025(syst). The data exclude the no-oscillation hypothesis at 99.8% CL (2.9{\sigma}).
Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment
Y. Abe,C. Aberle,T. Akiri,J. C. dos Anjos,F. Ardellier,A. F. Barbosa,A. Baxter,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,M. Bongrand,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,S. Cormon,J. I. Crespo-Anadón,M. Cribier,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,M. Dierckxsens,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,Y. Efremenko,M. Elnimr,Y. Endo,A. Etenko,E. Falk,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,S. M. Fernandes,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,B. Guillon,N. Haag,C. Hagner,T. Hara,F. X. Hartmann,J. Hartnell,T. Haruna,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,Y. Kibe,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,C. Langbrandtner,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,Y. Liu,J. M. López-Castan?,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,T. Miletic,R. Milincic,A. Milzstajn,H. Miyata,D. Motta,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy
Statistics , 2011, DOI: 10.1103/PhysRevLett.108.131801
Abstract: The Double Chooz Experiment presents an indication of reactor electron antineutrino disappearance consistent with neutrino oscillations. A ratio of 0.944 $\pm$ 0.016 (stat) $\pm$ 0.040 (syst) observed to predicted events was obtained in 101 days of running at the Chooz Nuclear Power Plant in France, with two 4.25 GW$_{th}$ reactors. The results were obtained from a single 10 m$^3$ fiducial volume detector located 1050 m from the two reactor cores. The reactor antineutrino flux prediction used the Bugey4 measurement as an anchor point. The deficit can be interpreted as an indication of a non-zero value of the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate of the prompt positrons and their energy spectrum we find \sang = 0.086 $\pm$ 0.041 (stat) $\pm$ 0.030 (syst), or, at 90% CL, 0.015 $<$ \sang $\ <$ 0.16.
First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment
Double Chooz Collaboration,Y. Abe,C. Aberle,J. C. dos Anjos,M. Bergevin,A. Bernstein,T. J. C. Bezerra,L. Bezrukhov,E. Blucher,N. S. Bowden,C. Buck,J. Busenitz,A. Cabrera,E. Caden,L. Camilleri,R. Carr,M. Cerrada,P. -J. Chang,P. Chimenti,T. Classen,A. P. Collin,E. Conover,J. M. Conrad,J. I. Crespo-Anadón,K. Crum,A. Cucoanes,M. V. D'Agostino,E. Damon,J. V. Dawson,S. Dazeley,D. Dietrich,Z. Djurcic,M. Dracos,V. Durand,J. Ebert,Y. Efremenko,M. Elnimr,A. Erickson,M. Fallot,M. Fechner,F. von Feilitzsch,J. Felde,V. Fischer,D. Franco,A. J. Franke,M. Franke,H. Furuta,R. Gama,I. Gil-Botella,L. Giot,M. G?ger-Neff,L. F. G. Gonzalez,M. C. Goodman,J. TM. Goon,D. Greiner,N. Haag,S. Habib,C. Hagner,T. Hara,F. X. Hartmann,J. Haser,A. Hatzikoutelis,T. Hayakawa,M. Hofmann,G. A. Horton-Smith,M. Ishitsuka,J. Jochum,C. Jollet,C. L. Jones,F. Kaether,L. N. Kalousis,Y. Kamyshkov,D. M. Kaplan,T. Katori,T. Kawasaki,G. Keefer,E. Kemp,H. de Kerret,T. Konno,D. Kryn,M. Kuze,T. Lachenmaier,C. E. Lane,T. Lasserre,A. Letourneau,D. Lhuillier,H. P. Lima Jr,M. Lindner,J. M. López-Casta?o,J. M. LoSecco,B. K. Lubsandorzhiev,S. Lucht,D. McKee,J. Maeda,C. N. Maesano,C. Mariani,J. Maricic,J. Martino,T. Matsubara,G. Mention,A. Meregaglia,M. Meyer,T. Miletic,R. Milincic,H. Miyata,Th. A. Mueller,Y. Nagasaka,K. Nakajima,P. Novella,M. Obolensky,L. Oberauer,A. Onillon,A. Osborn,I. Ostrovskiy,C. Palomares,I. M. Pepe,S. Perasso,P. Perrin,P. Pfahler,A. Porta,W. Potzel,G. Pronost,J. Reichenbacher,B. Reinhold,A. Remoto
Physics , 2012, DOI: 10.1103/PhysRevD.86.112009
Abstract: We present a search for Lorentz violation with 8249 candidate electron antineutrino events taken by the Double Chooz experiment in 227.9 live days of running. This analysis, featuring a search for a sidereal time dependence of the events, is the first test of Lorentz invariance using a reactor-based antineutrino source. No sidereal variation is present in the data and the disappearance results are consistent with sidereal time independent oscillations. Under the Standard-Model Extension (SME), we set the first limits on fourteen Lorentz violating coefficients associated with transitions between electron and tau flavor, and set two competitive limits associated with transitions between electron and muon flavor.
Page 1 /461897
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.