oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 11 )

2019 ( 694 )

2018 ( 818 )

2017 ( 752 )

Custom range...

Search Results: 1 - 10 of 461895 matches for " A. Caminata "
All listed articles are free for downloading (OA Articles)
Page 1 /461895
Display every page Item
Generalized Hilbert-Kunz function in graded dimension two
Holger Brenner,Alessio Caminata
Mathematics , 2015,
Abstract: We prove that the generalized Hilbert-Kunz function of a graded module $M$ over a two-dimensional standard graded normal $K$-domain over an algebraically closed field $K$ of prime characteristic $p$ has the form $gHK(M,q)=e_{gHK}(M)q^{2}+\gamma(q)$, with rational generalized Hilbert-Kunz multiplicity $e_{gHK}(M)$ and a bounded function $\gamma(q)$. Moreover we prove that if $R$ is a $\mathbb{Z}$-algebra, the limit for $p\rightarrow+\infty$ of the generalized Hilbert-Kunz multiplicity $e_{gHK}^{R_p}(M_p)$ over the fibers $R_p$ exists and it is a rational number.
Cohomological dimension and arithmetical rank of some determinantal ideals
Davide Bolognini,Alessio Caminata,Antonio Macchia,Maral Mostafazadehfard
Mathematics , 2015,
Abstract: Let $M$ be a $(2 \times n)$ non-generic matrix of linear forms in a polynomial ring. For large classes of such matrices, we compute the cohomological dimension (cd) and the arithmetical rank (ara) of the ideal $I_2(M)$ generated by the $2$-minors of $M$. Over an algebraically closed field, any $(2 \times n)$-matrix of linear forms can be written in the Kronecker-Weierstrass normal form, as a concatenation of scroll, Jordan and nilpotent blocks. B\u{a}descu and Valla computed $\mathrm{ara}(I_2(M))$ when $M$ is a concatenation of scroll blocks. In this case we compute $\mathrm{cd}(I_2(M))$ and extend these results to concatenations of Jordan blocks. Eventually we compute $\mathrm{ara}(I_2(M))$ and $\mathrm{cd}(I_2(M))$ in an interesting mixed case, when $M$ contains both Jordan and scroll blocks. In all cases we show that $\mathrm{ara}(I_2(M))$ is less than the arithmetical rank of the determinantal ideal of a generic matrix.
Solar neutrino with Borexino: results and perspectives
O. Smirnov,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,G. Fiorentini,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,Q. Meindl,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,H. Wang,J. Winter,M. Wojcik,A. Wright,M. Wurm,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2014, DOI: 10.1134/S1063779615020185
Abstract: Borexino is a unique detector able to perform measurement of solar neutrinos fluxes in the energy region around 1 MeV or below due to its low level of radioactive background. It was constructed at the LNGS underground laboratory with a goal of solar $^{7}$Be neutrino flux measurement with 5\% precision. The goal has been successfully achieved marking the end of the first stage of the experiment. A number of other important measurements of solar neutrino fluxes have been performed during the first stage. Recently the collaboration conducted successful liquid scintillator repurification campaign aiming to reduce main contaminants in the sub-MeV energy range. With the new levels of radiopurity Borexino can improve existing and challenge a number of new measurements including: improvement of the results on the Solar and terrestrial neutrino fluxes measurements; measurement of pp and CNO solar neutrino fluxes; search for non-standard interactions of neutrino; study of the neutrino oscillations on the short baseline with an artificial neutrino source (search for sterile neutrino) in context of SOX project.
Low-energy (anti)neutrino physics with Borexino: Neutrinos from the primary proton-proton fusion process in the Sun
P. Mosteiro,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,L. Cadonati,F. Calaprice,A. Caminata,P. Cavalcante,A. Chavarria,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,S. Gazzana,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Al. Ianni,An. Ianni,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,T. Lewke,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,Q. Meindl,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,N. Rossi,R. Saldanha,C. Salvo,S. Schoenert,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,D. Vignaud,R. B. Vogelaar,F. von Feilitzsch,H. Wang,J. Winter,M. Wojcik,A. Wright,M. Wurm,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015, DOI: 10.1016/j.nuclphysbps.2015.06.023
Abstract: The Sun is fueled by a series of nuclear reactions that produce the energy that makes it shine. The primary reaction is the fusion of two protons into a deuteron, a positron and a neutrino. These neutrinos constitute the vast majority of neutrinos reaching Earth, providing us with key information about what goes on at the core of our star. Several experiments have now confirmed the observation of neutrino oscillations by detecting neutrinos from secondary nuclear processes in the Sun; this is the first direct spectral measurement of the neutrinos from the keystone proton-proton fusion. This observation is a crucial step towards the completion of the spectroscopy of pp-chain neutrinos, as well as further validation of the LMA-MSW model of neutrino oscillations.
A test of electric charge conservation with Borexino
Borexino Collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhvatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,A. Vishneva,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015, DOI: 10.1103/PhysRevLett.115.231802
Abstract: Borexino is a liquid scintillation detector located deep underground at the Laboratori Nazionali del Gran Sasso (LNGS, Italy). Thanks to the unmatched radio-purity of the scintillator, and to the well understood detector response at low energy, a new limit on the stability of the electron for decay into a neutrino and a single mono-energetic photon was obtained. This new bound, tau > 6.6 10**28 yr at 90 % C.L., is two orders of magnitude better than the previous limit.
Measurement of neutrino flux from the primary proton--proton fusion process in the Sun with Borexino detector
O. Y. Smirnov,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. D'Angelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goeger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,P. Mosteiro,V. Muratova,B. Neumair,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,A. Romani,R. Roncin,N. Rossi,S. Sch?nert,D. Semenov,H. Simgen,M. Skorokhvatov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Wojcik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Physics , 2015,
Abstract: Neutrino produced in a chain of nuclear reactions in the Sun starting from the fusion of two protons, for the first time has been detected in a real-time detector in spectrometric mode. The unique properties of the Borexino detector provided an oppurtunity to disentangle pp-neutrino spectrum from the background components. A comparison of the total neutrino flux from the Sun with Solar luminosity in photons provides a test of the stability of the Sun on the 10$^{5}$ years time scale, and sets a strong limit on the power production in the unknown energy sources in the Sun of no more than 4\% of the total energy production at 90\% C.L.
Spectroscopy of geo-neutrinos from 2056 days of Borexino data
Borexino collaboration,M. Agostini,S. Appel,G. Bellini,J. Benziger,D. Bick,G. Bonfini,D. Bravo,B. Caccianiga,F. Calaprice,A. Caminata,P. Cavalcante,A. Chepurnov,K. Choi,D. DAngelo,S. Davini,A. Derbin,L. Di Noto,I. Drachnev,A. Empl,A. Etenko,G. Fiorentini,K. Fomenko,D. Franco,F. Gabriele,C. Galbiati,C. Ghiano,M. Giammarchi,M. Goger-Neff,A. Goretti,M. Gromov,C. Hagner,E. Hungerford,Aldo Ianni,Andrea Ianni,K. Jedrzejczak,M. Kaiser,V. Kobychev,D. Korablev,G. Korga,D. Kryn,M. Laubenstein,B. Lehnert,E. Litvinovich,F. Lombardi,P. Lombardi,L. Ludhova,G. Lukyanchenko,I. Machulin,S. Manecki,W. Maneschg,F. Mantovani,S. Marcocci,E. Meroni,M. Meyer,L. Miramonti,M. Misiaszek,M. Montuschi,P. Mosteiro,V. Muratova,L. Oberauer,M. Obolensky,F. Ortica,K. Otis,L. Pagani,M. Pallavicini,L. Papp,L. Perasso,S. Perasso,A. Pocar,G. Ranucci,A. Razeto,A. Re,B. Ricci,A. Romani,R. Roncin,N. Rossi,S. Schoenert,D. Semenov,H. Simgen,M. Skorokhavatov,O. Smirnov,A. Sotnikov,S. Sukhotin,Y. Suvorov,R. Tartaglia,G. Testera,J. Thurn,M. Toropova,E. Unzhakov,R. B. Vogelaar,F. von Feilitzsch,H. Wang,S. Weinz,J. Winter,M. Woicik,M. Wurm,Z. Yokley,O. Zaimidoroga,S. Zavatarelli,K. Zuber,G. Zuzel
Statistics , 2015, DOI: 10.1103/PhysRevD.92.031101
Abstract: We report an improved geo-neutrino measurement with Borexino from 2056 days of data taking. The present exposure is $(5.5\pm0.3)\times10^{31}$ proton$\times$yr. Assuming a chondritic Th/U mass ratio of 3.9, we obtain $23.7 ^{+6.5}_{-5.7} (stat) ^{+0.9}_{-0.6} (sys)$ geo-neutrino events. The null observation of geo-neutrinos with Borexino alone has a probability of $3.6 \times 10^{-9}$ (5.9$\sigma$). A geo-neutrino signal from the mantle is obtained at 98\% C.L. The radiogenic heat production for U and Th from the present best-fit result is restricted to the range 23-36 TW, taking into account the uncertainty on the distribution of heat producing elements inside the Earth.
The CUORE and CUORE-0 Experiments at Gran Sasso
A. Giachero,D. R. Artusa,F. T. Avignone III,O. Azzolini,M. Balata,T. I. Banks,G. Bari,J. Beeman,F. Bellini,A. Bersani,M. Biassoni,C. Brofferio,C. Bucci,X. Z. Cai,A. Camacho,A. Caminata,L. Canonica,X. G. Cao,S. Capelli,L. Cappelli,L. Carbone,L. Cardani,N. Casali,L. Cassina,D. Chiesa,N. Chott,M. Clemenza,S. Copello,C. Cosmelli,O. Cremonesi,R. J. Creswick,J. S. Cushman,I. Dafinei,A. Dally,V. Datskov,S. Dell'Oro,M. M. Deninno,S. Di Domizio,M. L. di Vacri,A. Drobizhev,L. Ejzak,D. Q. Fang,H. A. Farach,M. Faverzani,G. Fernandes,E. Ferri,F. Ferroni,E. Fiorini,M. A. Franceschi,S. J. Freedman,B. K. Fujikawa,L. Gironi,A. Giuliani,P. Gorla,C. Gotti,T. D. Gutierrez,E. E. Haller,K. Han,K. M. Heeger,R. Hennings-Yeomans,K. P. Hickerson,H. Z. Huang,R. Kadel,K. Kazkaz,G. Keppel,Yu. G. Kolomensky,Y. L. Li,C. Ligi,K. E. Lim,X. Liu,Y. G. Ma,C. Maiano,M. Maino,M. Martinez,R. H. Maruyama,Y. Mei,N. Moggi,S. Morganti,T. Napolitano,M. Nastasi,S. Nisi,C. Nones,E. B. Norman,A. Nucciotti,T. O'Donnell,F. Orio,D. Orlandi,J. L. Ouellet,C. E. Pagliarone,M. Pallavicini,L. Pattavina,M. Pavan,M. Pedretti,G. Pessina,V. Pettinacci,G. Piperno,C. Pira,S. Pirro,S. Pozzi,E. Previtali,V. Rampazzo,C. Rosenfeld,C. Rusconi,E. Sala,S. Sangiorgio,N. D. Scielzo,M. Sisti,A. R. Smith,L. Taffarello,M. Tenconi,F. Terranova,W. D. Tian,C. Tomei,S. Trentalange,G. Ventura,M. Vignati,B. S. Wang,H. W. Wang,L. Wielgus,J. Wilson,L. A. Winslow,T. Wise,A. Woodcraft,L. Zanotti,C. Zarra,G. Q. Zhang,B. X. Zhu,S. Zucchelli
Physics , 2014, DOI: 10.1051/epjconf/20149504024
Abstract: The Cryogenic Underground Observatory for Rare Events (CUORE) is an experiment to search for neutrinoless double beta decay ($0\nu\beta\beta$) in $^{130}$Te and other rare processes. CUORE is a cryogenic detector composed of 988 TeO$_2$ bolometers for a total mass of about 741 kg. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/(keV$\cdot$kg$\cdot$y) will be reached, in five years of data taking CUORE will have an half life sensitivity around $1\times 10^{26}$ y at 90\% C.L. As a first step towards CUORE a smaller experiment CUORE-0, constructed to test and demonstrate the performances expected for CUORE, has been assembled and is running. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
Status of the CUORE and results from the CUORE-0 neutrinoless double beta decay experiments
CUORE Collaboration,M. Sisti,D. R. Artusa,F. T. Avignone III,O. Azzolini,M. Balata,T. I. Banks,G. Bari,J. Beeman,F. Bellini,A. Bersani,M. Biassoni,C. Brofferio,C. Bucci,X. Z. Cai,A. Camacho,A. Caminata,L. Canonica,X. G. Cao,S. Capelli,L. Cappelli,L. Carbone,L. Cardani,N. Casali,L. Cassina,D. Chiesa,N. Chott,M. Clemenza,S. Copello,C. Cosmelli,O. Cremonesi,R. J. Creswick,J. S. Cushman,I. Dafinei,A. Dally,V. Datskov,S. Dell'Oro,M. Deninno,S. Di Domizio,M. L. di Vacri,A. Drobizhev,L. Ejzak,D. Q. Fang,H. A. Farach,M. Faverzani,G. Fernandes,E. Ferri,F. Ferroni,E. Fiorini,M. A. Franceschi,S. J. Freedman,B. K. Fujikawa,A. Giachero,L. Gironi,A. Giuliani,P. Gorla,C. Gotti,T. D. Gutierrez,E. E. Haller,K. Han,K. M. Heeger,R. Hennings-Yeomans,K. P. Hickerson,H. Z. Huang,R. Kadel,G. Keppel,Yu. G. Kolomensky,Y. L. Li,C. Ligi,K. E. Lim,X. Liu,Y. G. Ma,C. Maiano,M. Maino,M. Martinez,R. H. Maruyama,Y. Mei,N. Moggi,S. Morganti,T. Napolitano,M. Nastasi,S. Nisi,C. Nones,E. B. Norman,A. Nucciotti,T. O'Donnell,F. Orio,D. Orlandi,J. L. Ouellet,C. E. Pagliarone,M. Pallavicini,V. Palmieri,L. Pattavina,M. Pavan,M. Pedretti,G. Pessina,V. Pettinacci,G. Piperno,C. Pira,S. Pirro,S. Pozzi,E. Previtali,C. Rosenfeld,C. Rusconi,E. Sala,S. Sangiorgio,N. D. Scielzo,A. R. Smith,L. Taffarello,M. Tenconi,F. Terranova,W. D. Tian,C. Tomei,S. Trentalange,G. Ventura,M. Vignati,B. S. Wang,H. W. Wang,L. Wielgus,J. Wilson,L. A. Winslow,T. Wise,A. Woodcraft,L. Zanotti,C. Zarra,G. Q. Zhang,B. X. Zhu,S. Zucchelli
Physics , 2015,
Abstract: CUORE is a 741 kg array of TeO2 bolometers for the search of neutrinoless double beta decay of 130Te. The detector is being constructed at the Laboratori Nazionali del Gran Sasso, Italy, where it will start taking data in 2015. If the target background of 0.01 counts/keV/kg/y will be reached, in five years of data taking CUORE will have a 1 sigma half life sensitivity of 10E26 y. CUORE-0 is a smaller experiment constructed to test and demonstrate the performances expected for CUORE. The detector is a single tower of 52 CUORE-like bolometers that started taking data in spring 2013. The status and perspectives of CUORE will be discussed, and the first CUORE-0 data will be presented.
CUORE-0 results and prospects for the CUORE experiment
CUORE Collaboration,D. R. Artusa,F. T. Avignone III,O. Azzolini,M. Balata,T. I. Banks,G. Bari,J. Beeman,F. Bellini,A. Bersani,M. Biassoni,C. Brofferio,C. Bucci,X. Z. Cai,A. Camacho,A. Caminata,L. Canonica,X. Cao,S. Capelli,L. Cappelli,L. Carbone,L. Cardani,N. Casali,L. Cassina,D. Chiesa,N. Chott,M. Clemenza,S. Copello,C. Cosmelli,O. Cremonesi,R. J. Creswick,J. S. Cushman,I. Dafinei,A. Dally,V. Datskov,S. Dell'Oro,M. Deninno,S. Di Domizio,M. L. di Vacri,A. Drobizhev,L. Ejzak,D. Q. Fang,H. A. Farach,M. Faverzani,G. Fernandes,E. Ferri,F. Ferroni,E. Fiorini,M. A. Franceschi,S. J. Freedman,B. K. Fujikawa,A. Giachero,L. Gironi,A. Giuliani,P. Gorla,C. Gotti,T. D. Gutierrez,E. E. Haller,K. Han,K. M. Heeger,R. Hennings-Yeomans,K. P. Hickerson,H. Z. Huang,R. Kadel,K. Kazkaz,G. Keppel,Yu. G. Kolomensky,Y. L. Li,C. Ligi,K. E. Lim,X. Liu,Y. G. Ma,C. Maiano,M. Maino,M. Martinez,R. H. Maruyama,Y. Mei,N. Moggi,S. Morganti,T. Napolitano,M. Nastasi,S. Nisi,C. Nones,E. B. Norman,A. Nucciotti,T. O'Donnell,F. Orio,D. Orlandi,J. L. Ouellet,C. E. Pagliarone,M. Pallavicini,V. Palmieri,L. Pattavina,M. Pavan,M. Pedretti,G. Pessina,V. Pettinacci,G. Piperno,C. Pira,S. Pirro,S. Pozzi,E. Previtali,V. Rampazzo,C. Rosenfeld,C. Rusconi,E. Sala,S. Sangiorgio,N. D. Scielzo,M. Sisti,A. R. Smith,L. Taffarello,M. Tenconi,F. Terranova,W. D. Tian,C. Tomei,S. Trentalange,G. Ventura,M. Vignati,B. S. Wang,H. W. Wang,L. Wielgus,J. Wilson,L. A. Winslow,T. Wise,A. Woodcraft,L. Zanotti,C. Zarra,G. Q. Zhang,B. X. Zhu
Physics , 2015,
Abstract: With 741 kg of TeO2 crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, the CUORE (Cryogenic Underground Observatory for Rare Events) experiment aims at searching for neutrinoless double beta decay of 130Te with unprecedented sensitivity. Expected to start data taking in 2015, CUORE is currently in an advanced construction phase at LNGS. CUORE projected neutrinoless double beta decay half-life sensitivity is 1.6E26 y at 1 sigma (9.5E25 y at the 90% confidence level), in five years of live time, corresponding to an upper limit on the effective Majorana mass in the range 40-100 meV (50-130 meV). Further background rejection with auxiliary bolometric detectors could improve CUORE sensitivity and competitiveness of bolometric detectors towards a full analysis of the inverted neutrino mass hierarchy. CUORE-0 was built to test and demonstrate the performance of the upcoming CUORE experiment. It consists of a single CUORE tower (52 TeO2 bolometers of 750 g each, arranged in a 13 floor structure) constructed strictly following CUORE recipes both for materials and assembly procedures. An experiment its own, CUORE-0 is expected to reach a sensitivity to the neutrinoless double beta decay half-life of 130Te around 3E24 y in one year of live time. We present an update of the data, corresponding to an exposure of 18.1 kg y. An analysis of the background indicates that the CUORE performance goal is satisfied while the sensitivity goal is within reach.
Page 1 /461895
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.