oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 594 )

2018 ( 817 )

2017 ( 752 )

2016 ( 1105 )

Custom range...

Search Results: 1 - 10 of 461787 matches for " A. Brenning "
All listed articles are free for downloading (OA Articles)
Page 1 /461787
Display every page Item
Spatial prediction models for landslide hazards: review, comparison and evaluation
A. Brenning
Natural Hazards and Earth System Sciences (NHESS) & Discussions (NHESSD) , 2005,
Abstract: The predictive power of logistic regression, support vector machines and bootstrap-aggregated classification trees (bagging, double-bagging) is compared using misclassification error rates on independent test data sets. Based on a resampling approach that takes into account spatial autocorrelation, error rates for predicting "present" and "future" landslides are estimated within and outside the training area. In a case study from the Ecuadorian Andes, logistic regression with stepwise backward variable selection yields lowest error rates and demonstrates the best generalization capabilities. The evaluation outside the training area reveals that tree-based methods tend to overfit the data.
Conditions for plasmoid penetration across magnetic barriers
Nils Brenning,Tomas Hurtig,Michael A. Raadu
Physics , 2004, DOI: 10.1063/1.1812277
Abstract: The penetration of plasma clouds, or plasmoids, across abrupt magnetic barriers (of the scale less than a few ion gyro radii, using the plasmoid directed velocity) is studied. The insight gained earlier, from experimental and computer simulation investigations of a case study, is generalised into other parameter regimes. It is concluded for what parameters a plasmoid should be expected to penetrate the magnetic barrier through self-polarization, penetrate through magnetic expulsion, or be rejected from the barrier. The scaling parameters are n(e), v(0), B(perp), m(i), T(i), and the width w of the plasmoid. The scaling is based on a model for strongly driven, nonlinear magnetic field diffusion into a plasma, which is a generalization of the laboratory findings. The results are applied to experiments earlier reported in the literature, and also to the proposed application of impulsive penetration of plasmoids from the solar wind into the Earth's magnetosphere.
The penetration of plasma clouds across magnetic boundaries : the role of high frequency oscillations
Tomas Hurtig,Nils Brenning,Michael A. Raadu
Physics , 2004, DOI: 10.1063/1.1753575
Abstract: Experiments are reported where a collisionfree plasma cloud penetrates a magnetic barrier by self-polarization. We here focus on the resulting anomalous magnetic field diffusion into the plasma cloud, two orders of magnitude faster than classical, which is one important aspect of the plasma cloud penetration mechanism. Without such fast magnetic diffusion, clouds with kinetic beta below unity would not be able to penetrate magnetic barriers at all. Tailor-made diagnostics has been used for measurements in the parameter range with the kinetic beta ? 0.5 to 10, and with normalized width w/r(gi) of the order of unity. Experimental data on hf fluctuations in density and in electric field has been combined to yield the effective anomalous transverse resistivity eta(EFF). It is concluded that they are both dominated by highly nonlinear oscillations in the lower hybrid range, driven by a strong diamagnetic current loop that is set up in the plasma in the penetration process. The anomalous magnetic diffusion rate, calculated from the resistivity eta(EFF), is consistent with single-shot multi-probe array measurements of the diamagnetic cavity and the associated quasi-dc electric structure. An interpretation of the instability measurements in terms of the resistive term in the generalized (low frequency) Ohm's law is given.
Thermal remote sensing of ice-debris landforms using ASTER
A. Brenning,M. A. Pe?a,S. Long,A. Soliman
The Cryosphere Discussions , 2011, DOI: 10.5194/tcd-5-2895-2011
Abstract: Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potentials of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions
Thermal remote sensing of ice-debris landforms using ASTER: an example from the Chilean Andes
A. Brenning,M. A. Pe?a,S. Long,A. Soliman
The Cryosphere , 2012, DOI: 10.5194/tc-6-367-2012
Abstract: Remote sensors face challenges in characterizing mountain permafrost and ground thermal conditions or mapping rock glaciers and debris-covered glaciers. We explore the potential of thermal imaging and in particular thermal inertia mapping in mountain cryospheric research, focusing on the relationships between ground surface temperatures and the presence of ice-debris landforms on one side and land surface temperature (LST) and apparent thermal inertia (ATI) on the other. In our case study we utilize ASTER daytime and nighttime imagery and in-situ measurements of near-surface ground temperature (NSGT) in the Mediterranean Andes during a snow-free and dry observation period in late summer. Spatial patterns of LST and NSGT were mostly consistent with each other both at daytime and at nighttime. Daytime LST over ice-debris landforms was decreased and ATI consequently increased compared to other debris surfaces under otherwise equal conditions, but NSGT showed contradictory results, which underlines the complexity and possible scale dependence of ATI in heterogeneous substrates with the presence of a thermal mismatch and a heat sink at depth. While our results demonstrate the utility of thermal imaging and ATI mapping in a mountain cryospheric context, further research is needed for a better interpretation of ATI patterns in complex thermophysical conditions.
Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics
L. Boeckli,A. Brenning,S. Gruber,J. Noetzli
The Cryosphere , 2012, DOI: 10.5194/tc-6-807-2012
Abstract: The objective of this study is the production of an Alpine Permafrost Index Map (APIM) covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in the terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning. Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area.
A statistical permafrost distribution model for the European Alps
L. Boeckli,A. Brenning,S. Gruber,J. Noetzli
The Cryosphere Discussions , 2011, DOI: 10.5194/tcd-5-1419-2011
Abstract: Permafrost distribution modeling in densely populated mountain regions is an important task to support the construction of infrastructure and for the assessment of climate change effects on permafrost and related natural systems. In order to analyze permafrost distribution and evolution on an Alpine-wide scale, one consistent model for the entire domain is needed. We present a statistical permafrost model for the entire Alps based on rock glacier inventories and rock surface temperatures. Starting from an integrated model framework, two different sub-models were developed, one for debris covered areas (debris model) and one for steep rock faces (rock model). For the debris model a generalized linear mixed-effect model (GLMM) was used to predict the probability of a rock glacier being intact as opposed to relict. The model is based on the explanatory variables mean annual air temperature (MAAT), potential incoming solar radiation (PISR) and the mean annual sum of precipitation (PRECIP), and achieves an excellent discrimination (area under the receiver-operating characteristic, AUROC = 0.91). Surprisingly, the probability of a rock glacier being intact is positively associated with increasing PRECIP for given MAAT and PISR conditions. The rock model was calibrated with mean annual rock surface temperatures (MARST) and is based on MAAT and PISR. The linear regression achieves a root mean square error (RMSE) of 1.6 °C. The final model combines the two sub-models and accounts for the different scales used for model calibration. Further steps to transfer this model into a map-based product are outlined.
A statistical approach to modelling permafrost distribution in the European Alps or similar mountain ranges
L. Boeckli,A. Brenning,S. Gruber,J. Noetzli
The Cryosphere , 2012, DOI: 10.5194/tc-6-125-2012
Abstract: Estimates of permafrost distribution in mountain regions are important for the assessment of climate change effects on natural and human systems. In order to make permafrost analyses and the establishment of guidelines for e.g. construction or hazard assessment comparable and compatible between regions, one consistent and traceable model for the entire Alpine domain is required. For the calibration of statistical models, the scarcity of suitable and reliable information about the presence or absence of permafrost makes the use of large areas attractive due to the larger data base available. We present a strategy and method for modelling permafrost distribution of entire mountain regions and provide the results of statistical analyses and model calibration for the European Alps. Starting from an integrated model framework, two statistical sub-models are developed, one for debris-covered areas (debris model) and one for steep bedrock (rock model). They are calibrated using rock glacier inventories and rock surface temperatures. To support the later generalization to surface characteristics other than those available for calibration, so-called offset terms have been introduced into the model that allow doing this in a transparent and traceable manner. For the debris model a generalized linear mixed-effect model (GLMM) is used to predict the probability of a rock glacier being intact as opposed to relict. It is based on the explanatory variables mean annual air temperature (MAAT), potential incoming solar radiation (PISR) and the mean annual sum of precipitation (PRECIP), and achieves an excellent discrimination (area under the receiver-operating characteristic, AUROC = 0.91). Surprisingly, the probability of a rock glacier being intact is positively associated with increasing PRECIP for given MAAT and PISR conditions. The rock model is based on a linear regression and was calibrated with mean annual rock surface temperatures (MARST). The explanatory variables are MAAT and PISR. The linear regression achieves a root mean square error (RMSE) of 1.6 °C. The final model combines the two sub-models and accounts for the different scales used for model calibration. The modelling approach provides a theoretical basis for estimating mountain permafrost distribution over larger mountain ranges and can be expanded to more surface types and sub-models than considered, here. The analyses performed with the Alpine data set further provide quantitative insight into larger-area patterns as well as the model coefficients for a later spatial application. The transfer into a
Permafrost distribution in the European Alps: calculation and evaluation of an index map and summary statistics
L. Boeckli,A. Brenning,S. Gruber,J. Noetzli
The Cryosphere Discussions , 2012, DOI: 10.5194/tcd-6-849-2012
Abstract: The objective of this study is the production of an Alpine Permafrost Index Map (APIM) covering the entire European Alps. A unified statistical model that is based on Alpine-wide permafrost observations is used for debris and bedrock surfaces across the entire Alps. The explanatory variables of the model are mean annual air temperatures, potential incoming solar radiation and precipitation. Offset terms were applied to make model predictions for topographic and geomorphic conditions that differ from the terrain features used for model fitting. These offsets are based on literature review and involve some degree of subjective choice during model building. The assessment of the APIM is challenging because limited independent test data are available for comparison and these observations represent point information in a spatially highly variable topography. The APIM provides an index that describes the spatial distribution of permafrost and comes together with an interpretation key that helps to assess map uncertainties and to relate map contents to their actual expression in terrain. The map can be used as a first resource to estimate permafrost conditions at any given location in the European Alps in a variety of contexts such as research and spatial planning. Results show that Switzerland likely is the country with the largest permafrost area in the Alps, followed by Italy, Austria, France and Germany. Slovenia and Liechtenstein may have marginal permafrost areas. In all countries the permafrost area is expected to be larger than the glacier-covered area. The permafrost index map with an approximate grid spacing of 30 m is available at the webpage of the Department of Geography, University of Zurich.
Electromagnetic radiation from double layers
Nils Brenning,Mark Koepke,Ingvar Axnas,Michael A. Raadu
Physics , 2004,
Abstract: The background motivation, and some preliminary results, are reported for a recently begun investigation of a potentially important mechanism for electromagnetic radiation from space, Double Layer Radiation (DL-radiation). This type of radiation is proposed to come from DL-associated, spatially localized high frequency (hf) spikes that are driven by the electron beam on the high-potential side of the double layer. It is known, but only qualitatively, from laboratory experiments that double layers radiate in the electromagnetic spectrum. In our experiment the spectrum has high amplitude close to the plasma frequency, several hundred MHz. No clear theoretical model exists today. The quantitative evaluation is complicated because measurements are made in the near field of the radiating structure, and in the vicinity of conducting laboratory hardware that distorts the field. Because the localized electrostatic wavelengths (approximately 1 cm) can be relatively small compared to the emitted electromagnetic wavelengths, the situation is further complicated. We discuss the mutual influence between the ion density profile and hf-spike formation, and propose that some kind of self-organization of the density profile through the ponderomotive force of the hf spike might be operating. First results regarding the electromagnetic radiation are reported: the frequency, the time variation of the amplitude, and the spatial distribution in the discharge vessel.
Page 1 /461787
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.