Abstract:
We investigate the occurrence and nature of a naked singularity in the gravitational collapse of an inhomogeneous dust cloud described by a non self-similar higher dimensional Tolman spacetime. The necessary condition for the formation of a naked singularity or a black hole is obtained. The naked singularities are found to be gravitationally strong in the sense of Tipler and provide another example that violates the cosmic censorship conjecture.

Abstract:
We study the occurrence of naked singularities in the spherically symmetric collapse of a charged null fluid in an expanding deSitter background - a piece of charged Vaidya-deSitter spacetime. The necessary conditions for the formation of a naked singularity are found. The results for the uncharged solutions can be recovered from our analysis.

Abstract:
The interference phase of the high energy mass neutrinos and the low energy thermal neutrons in a gravitational field are studied. For the mass neutrinos, we obtain that the phase calculated along the null is equivalent to the half phase along the geodesic in the high energy limit, which means that the correct relative phase of the mass neutrinos is either the null phase or the half geodesic phase. Further we point out the importance of the energy condition in calculating the mass neutrino interference phase. Moreover, we apply the covariant phase to the calculation of the thermal neutron interference phase, and obtain the consistent result with that exploited in COW experiment.

Abstract:
On the mass neutrino phase calculations along both the particle geodesic line and the photon null line, there exists a double counting error--factor of 2 when comparing the geodesic phase with the null phase. For the mass neutrino propagation in the flat spacetime, we study the neutrino interference phase calculation in the Minkowski diagram and find that the double counting effect originates from despising the velocity difference between two mass neutrinos. Moreover, we compare the phase calculations among the same energy description, the same momentum description and same velocity description by means of the Minkowski diagram, and obtain the practical equivalence of these three descriptions. Further, in the curved spacetime, we also prove the existence of the double counting of the geodesic phase to the null phase.

Abstract:
We investigate the occurrence and nature of a naked singularity in the gravitational collapse of an inhomogeneous dust cloud described by higher dimensional Tolman-Bondi space-times. The naked singularities are found to be gravitationally strong in the sense of Tipler. Higher dimensions seem to favour black holes rather than naked singularities.

Abstract:
A cosmological model with variable G and Lambda is considered in the framework of Israel-Stewart-Hiscock (ISH) causal theory. Power law as well as inflationary solutions are obtained. The gravitational constant is found to increase with time.

Abstract:
For the Dirac particle in the rotational system, the rotation induced inertia effect is analogously treated as the modification of the "spin connection" on the Dirac equation in the flat spacetime, which is determined by the equivalent tetrad. From the point of view of parallelism description of spacetime, the obtained torsion axial-vector is just the rotational angular velocity, which is included in the "spin connection". Furthermore the axial-vector spin coupling induced spin precession is just the rotation-spin(1/2) interaction predicted by Mashhoon. Our derivation treatment is straightforward and simplified in the geometrical meaning and physical conception, however the obtained conclusions are consistent with that of the other previous work.

Abstract:
We attempt to solve the Einstein equations for string dust and null flowing radiation for the general axially symmetric metric, which we believe is being done for the first time. We obtain the string-dust and radiating generalizations of the Kerr and the NUT solutions. There also occurs an interesting case of radiating string-dust which arises from string-dust generalization of Vaidya's solution of a radiating star.

Abstract:
The well known monopole solution of Barriola and Vilenkin (BV) resulting from the breaking of a global SO(3) symmetry is extended in general relativity along with a zero mass scalar field and also in Brans-Dicke(BD) theory of gravity.In the case of BD theory, the behaviour of spacetime and other variables such as BD scalar field and the monopole energy density have been studied numerically.For monopole along with a zero mass scalar field, exact solutions are obtained and depending upon the choice of arbitary parameters, the solutions either reduce to the BV case or to a pure scalar field solution as special cases.It is interesting to note that unlike the BV case the global monopole in the BD theory does exert gravitational pull on a test particle moving in its spacetime.

Abstract:
We suggest the use of a nonlinear sigma model as the source which supports an emergent universe. The two-component nonlinear sigma model is considered as the simplest model containing inflaton and auxiliary chiral fields.