oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 25 )

2018 ( 566 )

2017 ( 608 )

2016 ( 589 )

Custom range...

Search Results: 1 - 10 of 24847 matches for " 魏纲 "
All listed articles are free for downloading (OA Articles)
Page 1 /24847
Display every page Item
盾构隧道深层土体沉降槽宽度系数计算方法研究

公路交通科技 , 2010,
Abstract: 收集了12组盾构法隧道施工引起的深层土体沉降实测数据,研究深层土体沉降槽宽度系数i(z)随着地层深度z增加产生的变化规律。研究结果表明i(z)随着z的增加而逐渐减小;i(z)/i(z=0)与(1-z/h)(h为隧道轴线埋深)之比在黏性土中基本呈幂函数关系,砂土中基本呈线性关系。对姜忻良计算公式进行了修正,使其具有更广泛的适用性。通过回归分析,提出一个新的i(z)经验计算公式。通过反分析以及与解析解进行比较,给出这两个公式计算参数的取值范围。算例分析表明,这两个公式均能较好的拟合实测值,可考虑不同土质条件,包括黏性土和砂类土,适用范围较广。
盾构法隧道统一土体移动模型的建立

岩石工程学报 , 2007,
Abstract: 首次提出土质软硬决定了盾构隧道周围土体的移动方向,移动焦点在隧道中心点与隧道底部位置之间变动。采用两圆相切的土体损失模型,通过引入移动焦点的坐标参数,建立了统一的土体移动模型,该模型能将park模型与loganathan模型包括在内。假定土体不排水,利用源汇法推导了由土体损失引起的盾构隧道轴线上方地面最大沉降量smax的通用计算公式和上、下限解。理论分析表明:无论土质如何变化,土体损失引起的smax值总在上、下限解范围内。理论解与27例工程实测值和peck解进行了比较,结果表明:21例实测值在上、下限解范围内,6例实测值超出该范围,但与上、下限解非常接近,超出量小于10%;peck公式计算得到的smax值也都在上、下限解范围内,仅有1例略微偏大,从而验证了本文方法的正确性。本文方法也适用于顶管法施工。
盾构隧道施工引起的土体损失率取值及分布研究

岩石工程学报 , 2010,
Abstract: 收集了杭州市庆春路过江盾构隧道施工引起的地面沉降实测数据,提出了施工阶段地面沉降值的取值办法。结合北京、上海、南京、广州、武汉、天津、深圳地区盾构法隧道施工引起的土体损失率实测值,对71个实测数据进行了统计分析。结果表明:土体损失率分布在0.20%~3.01%,其中95.77%的实测数据分布在0.20%~2.0%,43.66%的实测数据集中在0.5%~1.0%;黏性土地区土体损失率在0.20%~2.0%。土体损失率主要与施工水平、土质条件和隧道轴线埋深有关。随着隧道轴线埋深增大,土体损失率基本呈减小趋势,当埋深大于25m后该趋势比较明显,两者关系可近似采用幂函数拟合。
盾构法隧道地面沉降槽宽度系数取值的研究

工业建筑 , 2009, DOI: 10.13204/j.gyjz200912019
Abstract: 盾构法隧道施工引起的地面沉降槽宽度系数i值与隧道半径R、隧道轴线埋深h及土质条件(土的内摩擦角φ)有关。对13例22个实测数据的统计结果表明i值与[R+htan〔45°-φ/2〕]值间呈线性关系,i/[R+htan〔45°-φ/2〕]值中共有20个数据在[0.45,0.50],只有2个数据(分别为0.43和0.51)在该范围外;i与h基本呈线性关系,但离散性较大,对于黏性土,k=i/h的范围为[0.37,0.66];i/R与h/(2R)间的关系采用指数函数拟合效果比常用的幂函数要好,但参数取值范围较大。基于分析结果,提出新的i值计算公式,该公式适用于黏性土,考虑了R、h、φ,同时参数取值范围较小,避免经验性参数取值范围较大可能带来的误差。
盾构施工中土体损失引起的地面沉降预测

岩土力学 , 2007,
Abstract: 土质软硬决定了隧道周围土体的移动方向,移动焦点在隧道中心点与隧道底部位置之间变动。采用两圆相切的土体损失模型,通过引入移动焦点的坐标参数,建立了统一的土体移动模型,该模型能将park模型与loganathan模型包括在内。假定土体不排水,利用源汇法推导了由土体损失引起的地面沉降通用计算公式,该方法适用于施工阶段。算例分析表明该方法的计算结果与实测值非常吻合,适用于各种土质条件。loganathan公式只适用于土质较差的情况,当土质较好时计算得到的地面沉降量要比实测值偏小。
基坑开挖对下方既有盾构隧道影响的实测与分析

岩土力学 , 2013,
Abstract: 对基坑开挖影响下方既有盾构隧道的机制进行了理论分析。收集了14个国内基坑工程实例,对实测数据进行了统计分析,结果表明:盾构隧道的最大竖向位移均为隆起,且有64%的隧道隆起值超过报警值(10mm),提出了隧道最大隆起值的经验预测公式;隧道水平向位移较少量测,实测值较小;收敛变形由“水平向拉伸、竖向压缩”向“水平向压缩、竖向拉伸”转变。基于杭州市延安路某地下过街通道工程,研究了基坑开挖对下方地铁1号线盾构隧道变形的影响,对隧道竖向位移、水平向位移以及水平向收敛的实测数据进行了分析,其结果验证了理论分析和计算公式的可靠性。
顶管施工对相邻平行地下管线位移影响因素分析
余振翼,
岩土力学 , 2004,
Abstract: 顶管施工引起的管道周围土体移动会对相邻地下管线造成危害。采用三维有限元方法分析了顶管施工引起的相邻平行地下管线的位移,研究了注浆、纠偏、离顶管距离的远近、地下管线埋深、管线与土体弹性模量比及不同管材对地下管线位移的影响。计算结果表明,注浆与纠偏压力越大,地下管线的位移越大;地下管线距离顶管越远,引起的位移越小;地下管线弹性模量越小,产生的位移越大。
顶管施工对邻近地下管线的影响预测分析
,朱奎
岩土力学 , 2009,
Abstract: 采用通用peck公式计算顶管施工引起的地下管线平面处的土体竖向位移。对地下管线的受力模型进行简化,基于winkler地基模型,得到地下管线由于顶管开挖引起的极限弯矩、理论弯矩以及管线变形的计算方法。通过算例分析,与连续弹性解、attewell解和王涛解的计算结果进行比较,探讨了土质条件、管线材质、管线埋深、管线管径对地下管线受力的影响。计算结果表明,本方法适用于各种土质,可较好地预估管线所受弯矩,且不会低估管线所受的最大弯矩;在相同条件下,管线埋深越大承受的弯矩也越大,但埋深仅对最大正弯矩和最大负弯矩位置附近处的管线影响较大,对其余部位影响较小;管线抗弯刚度越大,管线承受的极限弯矩和影响范围也越大;管线管径越大,管线承受的弯矩也越大。
相邻水平平行顶管推进引起的附加荷载分析
,新江
岩土力学 , 2006,
Abstract: 利用弹性力学的mindlin解,推导得到顶管正面附加推力、掘进机和后续管道与土体之间的摩擦力在相邻水平平行管道上引起的附加荷载计算公式。探讨了管道净间距、直径、埋深以及土体泊松比对附加荷载分布的影响。分析结果表明,采取注浆措施时后续管道摩擦力在相邻管道上产生较小的压力,其峰值出现在开挖面后方。在正常施工时,正面附加推力引起的附加荷载非常小,使相邻管道开挖面前方产生压力、后方产生拉力,以开挖面呈反对称分布。掘进机摩擦力引起的附加荷载分布规律与正面附加推力相似,但零点位于掘进机中间部位相对应处,其引起的附加荷载较大,在三者共同作用中占主要地位,应予以重视。
水平平行顶管引起的地面沉降计算方法研究
新江,
岩土力学 , 2006,
Abstract: 对水平平行双线顶管之间的相互作用进行了分析,提出了横向扰动区范围的计算公式。考虑先施工顶管对后施工顶管的影响,提出了一种新的后施工顶管地面沉降计算方法,并给出算例分析。分析表明,水平平行顶管施工时由于中间区域受到双重扰动,会产生较大的地面沉降。当两顶管轴线距离较近时,由于先施工顶管对周围土体产生的扰动会使后施工顶管产生的扰动加剧,后施工顶管引起的最大地面沉降值和沉降槽宽度都要变大,且地面沉降曲线是不对称的,其最大沉降点要偏向先施工顶管侧,但仍然可以采用peck公式进行计算。
Page 1 /24847
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.