oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 50 )

2018 ( 1585 )

2017 ( 1633 )

2016 ( 1624 )

Custom range...

Search Results: 1 - 10 of 66688 matches for " 洪延超 "
All listed articles are free for downloading (OA Articles)
Page 1 /66688
Display every page Item
冰雹形成机制和催化防雹机制研究

气象学报 , 1999, DOI: 10.11676/qxxb1999.003
Abstract: 利用文献[1]发展的三维弹性冰雹云催化模式模拟研究了1997年7月8日陕西省旬邑防雹试验区出现的一块冰雹云,分析其冰雹形成的物理机制,对雹云做了高度催化试验,研究了催化防雹机制。结果表明,97%的雹块是以冻滴为核心增长的,在云中冰雹还未形成前,于强上升气流区的适当高度催化效果较好,而在上升气流极值高度,亦是高含水量区催化效果最好。催化使霰和冻滴的浓度增加,粒子质量减小,向雹的转化比例大为降低,因此雹块的质量和浓度都减小,达到了防雹的目的。
层状云结构和降水机制研究及人工增雨问题讨论

气候与环境研究 , 2012, DOI: 10.3878/j.issn.1006-9585.2012.06.31
Abstract: 总结了层状云及其降水物理研究的部分成果。在此基础上,讨论了层状云人工增雨的几个问题,提出用常规观测资料判断人工增雨条件的方法。具体结果如下:层状云结构是不均匀的。层状云系在垂直方向上具有分层结构。“催化—供给”云是降水性层状云的典型结构,“催化—供给”云相互作用是导致降水的主要过程。按微观结构可以将降水性层状云分成3层:冰相层、冰水混合层和液水层。冰相层是催化云,冰水混合层和液水层是供给云。层状云降水过程研究表明,对应于层状云或“催化—供给”云的3层宏观结构,发生着不同的微物理过程,粒子形成和增长过程也不同。冰相层的冰晶和雪,凝华是其主要增长方式,其次是雪与冰晶的聚合过程;雪(或聚合体)落入冰水混合层后,继续通过凝华增长或贝吉龙过程增长,同时撞冻过冷云水增长,有部分冰雪晶通过撞冻增长而转化成霰。在液水层,雪(或聚合体)霰开始融化,同时收集云暖区云水增长。冰相粒子的撞冻增长过程和凝华增长过程相比同样重要。层状云各层对降水的贡献不同。一般而言,对于“催化—供给”云,催化云对降水的贡献低于30%,供给云在70%以上。在以上研究的基础上,讨论了层状云人工增雨的问题。(1)“催化—供给”云结构有利于云水转化成降水,只有冰相层、冰水混合成和液水层相互“配合”,才能形成有效降水。可以将“催化—供给”云作为层状云人工增雨催化的结构条件。(2)要选择降水形成以冷云过程为主的层状云催化,冰面饱和水汽量和过冷水含量要大些。(3)层状云人工增雨原理应该补充。降水形成不但经历贝吉龙-芬德森过程,冰水混合层的聚合和撞冻增长也是十分重要的过程。过冷水对于降水的形成非常重要,但冰面饱和水汽量对降水的形成也同样重要。最后,结合层状云的研究成果,提出用常规探测资料判别层状云人工增雨催化条件的方法:利用卫星云图和雷达回波判别“催化—供给”云的结构,用雷达rhi回波(在距离高度显示器上的回波)判别降水机制和液水层。
三维冰雹云催化数值模式

气象学报 , 1998, DOI: 10.11676/qxxb1998.060
Abstract: 为了研究冰雹形成机制、催化防雹机制和通过数值试验获得冰雹云优化催化技术,在以前工作的基础上,发展了一个3维弹性冰雹云催化数值模式。模式考虑了冰雹云中详细的微物理过程,各种粒子采用双变参数谱,将云中水物质分成水汽、云水、雨水、冰晶、雪、霰、冻滴和雹8类,可以预报粒子的比浓度和比含量,尤其可以计算以霰或冻滴为胚胎的雹块的数量,非常适合研究冰雹的形成机制。此外,建立了催化剂agi的守恒方程,考虑了人工冰核的凝华核化及与云、雨滴接触的冻结核化过程,并用地面降雹动能通量检验催化防雹效果,因此,也可以研究催化防雹机制和对雹云的催化技术。
积层混合云数值模拟研究(ⅱ)──云相互作用及暴雨产生机制

气象学报 , 1996, DOI: 10.11676/qxxb1996.069
Abstract: 用文(ⅰ)积层混合云数值模式及暴雨云的平均大气层结模拟研究了暴雨积层混合云的演变过程、两种云的相互作用、云体结构及降水特征,并分析了暴雨产生的物理原因。结果表明,在积层混合云中,当对流发展时其周围层状云减弱甚至消散,层状云的降水强度随着离开对流云距离增大而增大。数值试验说明:层状云给积云提供良好的发展条件,饱和的环境及伴随层状云的辐合场使对流云具有长生命期、产生持续性的高强度降水和间歇性的特高强度降水;积层混合云是一非常有效的降水系统,这些及冰相微物理过程是暴雨产生的主要物理原因。
积层混合云数值模拟研究(ⅰ)──模式及其微物理过程参数化

气象学报 , 1996, DOI: 10.11676/qxxb1996.057
Abstract: 用积云对流速度场叠加辐合场的方法建立了一个二维平面对称积层混合云数值模式,以用于模拟研究层状云和嵌入其内的对流云组成的混合云。模式动力场计算以一种新的方法求解(v,θ,π)为基本变量的深对流滞弹守恒型方程组。云中微物理过程考虑了6种水质并使用双变参数谱描述和采用更为合理的粒子谱。为了便于与实测雷达回波强度和结构比较,模式可以计算雷达观测模式云的回波强度。
在梅雨锋云系内层状云回波结构及其降水的不均匀性
黄美元?,
气象学报 , 1984, DOI: 10.11676/qxxb1984.008
Abstract: 本文介绍了梅雨云系中层状云的不均匀结构,分析了层状云中不均匀亮带和下挂强回波的特征以及结构不均匀的层状云的降水特征。
Research Progress of Stratiform Cloud Structure and Precipitation Mechanism and Discussion on Artificial Precipitation Problems
层状云结构和降水机制研究及人工增雨问题讨论

HONG Yanchao,

气候与环境研究 , 2012,
Abstract: 总结了层状云及其降水物理研究的部分成果。在此基础上, 讨论了层状云人工增雨的几个问题, 提出用常规观测资料判断人工增雨条件的方法。具体结果如下:层状云结构是不均匀的。层状云系在垂直方向上具有分层结构。“催化—供给”云是降水性层状云的典型结构, “催化—供给”云相互作用是导致降水的主要过程。按微观结构可以将降水性层状云分成3 层:冰相层、冰水混合层和液水层。冰相层是催化云, 冰水混合层和液水层是供给云。层状云降水过程研究表明, 对应于层状云或“催化—供给”云的3层宏观结构, 发生着不同的微物理过程, 粒子形成和增长过程也不同。冰相层的冰晶和雪, 凝华是其主要增长方式, 其次是雪与冰晶的聚合过程;雪(或聚合体)落入冰水混合层后, 继续通过凝华增长或贝吉龙过程增长, 同时撞冻过冷云水增长, 有部分冰雪晶通过撞冻增长而转化成霰。在液水层, 雪(或聚合体)霰开始融化, 同时收集云暖区云水增长。冰相粒子的撞冻增长过程和凝华增长过程相比同样重要。层状云各层对降水的贡献不同。一般而言, 对于“催化—供给”云, 催化云对降水的贡献低于30%, 供给云在70%以上。在以上研究的基础上, 讨论了层状云人工增雨的问题。(1)“催化—供给”云结构有利于云水转化成降水, 只有冰相层、冰水混合成和液水层相互“配合”, 才能形成有效降水。可以将“催化—供给”云作为层状云人工增雨催化的结构条件。(2)要选择降水形成以冷云过程为主的层状云催化, 冰面饱和水汽量和过冷水含量要大些。(3)层状云人工增雨原理应该补充。降水形成不但经历贝吉龙-芬德森过程, 冰水混合层的聚合和撞冻增长也是十分重要的过程。过冷水对于降水的形成非常重要, 但冰面饱和水汽量对降水的形成也同样重要。最后, 结合层状云的研究成果, 提出用常规探测资料判别层状云人工增雨催化条件的方法:利用卫星云图和雷达回波判别“催化—供给”云的结构, 用雷达RHI 回波(在距离高度显示器上的回波)判别降水机制和液水层。
一次锋面层状云云系结构、降水机制及人工增雨条件研究
,李宏宇
高原气象 , 2011,
Abstract: 利用观测资料\,中尺度模式MM5和一维层状云模式,分析和研究了典型层状云系的“催化-供给”云结构及其分布、降水形成微物理机制;通过分析云的结构、降水机制和水分转化研究了人工增雨条件。结果表明,云系的不同部位,其垂直结构也不同,云系中有3个不同高度的含水量中心:高层冰云由冰晶和雪组成,含水量中心在300hPa高度;中层云为冰水混合层,云含水量中心在600~650hPa之间;低层云在800~900hPa之间,完全由液态水组成。这些含水量中心的高度大体上与凝结率极大值的高度对应。在锋面云系的不同部位,三层云有不同的组合。多层云是云系的主要宏观结构特征,说明“催化-供给”云体系是冷锋降水云系的主要降水机制。锋面云系中\!催化-供给\"云的水分转化分析表明,有29%的云水转化成降水粒子,冰粒子的撞冻增长是云水转化成降水的主要过程。约有49%的冰晶转化成雪,约有92%的雪融化成霰,约有96%的霰融化成雨水,占形成雨水总量的57%。锋面云系的部位不同,降水形成的机理也不同。远离锋区的锋后部位降水几乎完全由冷云过程形成,冰粒子主要通过凝华方式增长,撞冻增长过程很弱,降水完全由冰粒子融化形成。与锋区相比,锋前区暖云过程对雨水的贡献较大,60%的雨水是由暖云过程产生的;而锋区附近冷云过程对雨水的形成贡献较大。在云结构和降水机制研究基础上分析了云的人工增雨条件,可以用云体“催化-供给”云结构、降水机制、过冷水含量、冰晶浓度和云的暖区含水量以及冰面过饱和水汽量判断人工增雨催化条件\.
影响云和降水的动力、热力与微物理因素的研究概述
廖菲,,郑国光
气象 , 2006, DOI: 10.7519/j.issn.1000-0526.2006.11.001
Abstract: 由于云和降水的发生、发展是大气动力、热力过程与云中微物理过程相结合的产物,因而受到这些过程的共同制约和影响。为了更加详细地了解影响云和降水的动力、热力与微物理因素,分别从3个方面概要性地进行了阐述。(1)动力作用对云和降水发展的影响:主要讨论了风切变、天气系统抬升、地形动力作用和湍流的作用等因素的作用。(2)影响云和降水发展的热力因素:分别对热力扰动、潜热的作用、辐射作用等做了分析。(3)微物理过程对云和降水发展的影响:主要从微物理过程对动力热力过程的影响、带电过程对云降水粒子的影响、以及微物理过程对云降水影响的相对重要性等方面进行讨论。并在最后扼要地指出了在研究云和降水问题时,将动力、热力过程和微物理过程结合起来研究的必要性。
云降水物理和人工影响天气研究进展和思考
,雷恒池
气候与环境研究 , 2012, DOI: 10.3878/j.issn.1006-9585.2012.06.32
Abstract: 云降水物理和人工影响天气密不可分,云降水物理为人工影响天气提供理论基础,人工影响天气是云降水物理一个重要应用领域。目前我国人工影响天气规模、经费投入已达世界之最,人工影响天气工程正在建设之中。论文简要回顾了我国云物理研究和人工影响天气的发展过程,评述研究工作取得的进展,思考我国人工影响天气在新形势下进一步的发展的问题,显得尤为重要。几十年来,我国开展了一系列云雾降水的外场观测研究和人工影响天气的外场试验研究,云和降水物理以及人工影响天气的理论和技术研究不断取得进展,数值云模式和中尺度模式的模拟研究水平有了长足的进步,在云和降水物理过程和降水机制研究、云的微物理结构、云水资源和人工增雨潜力评估、催化条件预测、催化剂和催化技术等方面取得了显著进展。论文最后指出,目前的人工影响天气需要加强人工影响天气核心技术研究,并提出了需要进一步研究的云和降水物理中的有关科学问题。
Page 1 /66688
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.