oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2019 ( 39 )

2018 ( 716 )

2017 ( 692 )

2016 ( 660 )

Custom range...

Search Results: 1 - 10 of 29311 matches for " 安玥琦 "
All listed articles are free for downloading (OA Articles)
Page 1 /29311
Display every page Item
草鱼饲喂蚕豆过程中肌肉质构特性和化学成分变化及其关联性研究

- , 2015, DOI: 10.13982/j.mfst.1673-9078.2015.5.017
Abstract: 研究草鱼饲喂蚕豆过程中草鱼质构特性和化学成分的变化及关联性,确定草鱼脆化开始和达到商品脆性的时间。随饲喂时间的延长,草鱼肌肉的硬度、咀嚼性显著增大,硬度在饲喂80天后,基本与普通鲩鱼相同,鱼肉开始脆化,继续饲喂20天,硬度达到商品鱼的脆化标准。咀嚼性和弹性在饲喂80天时基本稳定,且熟制的背肌肌肉弹性随饲喂时间的延长显著增加,回复性在饲喂40天达到最大值。草鱼背肌粗蛋白、基质蛋白、胶原蛋白、碱溶性蛋白含量随饲喂时间的延长显著增加,均在饲喂100天时达到峰值。水分含量基本呈下降趋势,在饲喂20天时最大。粗脂肪、可溶性固形物、水溶性蛋白和盐溶性蛋白在饲喂40~60天时达到最大值。草鱼腹肌化学成分的含量变化与背肌基本一致。经相关性分析,草鱼肌肉质构特性的变化与粗蛋白、碱溶性蛋白、胶原蛋白和基质蛋白含量的变化显著相关。
Changes in textural properties and chemical components of grass carp during broad bean feeding and their correlations were investigated. The start and end times of grass carp crisping were determined. Experimental results indicated that the hardness and chewiness of grass carp increased significantly with the duration of feeding. After 80 days of feeding, hardness was equivalent to that of common carp and after 100 days of feeding, it was of crisping standard. Chewiness and springiness were stable after 80 days of feeding, wherein the springiness of the dorsal muscles increased significantly during feeding. The maximum level of resilience was at 40 days of feeding and subsequently, decreased significantly. Content of crude protein, matrix protein, collagen, and alkali-soluble protein of grass carp dorsal muscle increased significantly during feeding. Moisture content showed a decreasing trend with maximum level at 20 days of feeding. Content of crude fat, soluble solid, water-soluble protein, and salt-soluble protein of grass carp dorsal muscle were maximum at 40 to 60 days of feeding. Variations in chemical components of grass carp abdominal muscle were similar to that of the dorsal muscle. Correlational analysis showed that changes in the textural properties of grass carp correlated significantly with changes in crude protein, salt-soluble protein, matrix protein, and collagen content.
肌原纤维蛋白转谷氨酰胺酶交联程度对鱼糜凝胶及其风味释放影响的研究进展
,熊善柏
食品科学 , 2015,
Abstract: ?转谷氨酰胺酶可以催化肌原纤维蛋白发生交联反应。随着交联程度的增加,鱼糜凝胶从弹黏体变为弹脆体,风味也随之改变。风味物质的扩散、释放与凝胶网络的交联程度密切相关,因此深入了解交联程度与食品品质的关系及风味物质在凝胶网络中的扩散行为显得尤为重要。本文总结转谷氨酰胺酶催化肌原纤维蛋白的交联机理,归纳了国内外对肌原纤维蛋白交联程郭彩霞度的测定方法与影响因素,探讨交联程度对鱼糜蛋白的凝胶特性与风味释放的影响,并对今后的研究方向提出思考与展望。
碱性盐类对冷冻鱼糜保水性的影响
李莎莎,,丁玉琴,赵思明,熊善柏
食品科学 , 2012,
Abstract: ?以白鲢鱼糜为研究对象,研究添加柠檬酸钠、乳酸钠对冷冻鱼糜保水品质的影响。结果表明,添加柠檬酸钠、乳酸钠及两者的混合物可有效提高冷冻鱼糜的保水特性,且添加柠檬酸钠与乳酸钠的混合物优于单独添加柠檬酸钠或乳酸钠。经正交试验优化,在鱼糜中添加0.25%乳酸钠和0.50%柠檬酸钠时,冷冻鱼糜的解冻损失率最低,其离心损失率、煮制损失率与添加0.50%的复合磷酸盐的冷冻鱼糜无显著差异(p>0.05),按一定比例混合的柠檬酸钠与乳酸钠可替代复合磷酸盐保水剂。
人力资本结构调查与优化路径研究—以北京市为案例
The Investigation of Human Capital Structure and the Study on Its Optimization Path
 [PDF]

陈洪, 李乐,
Modern Management (MM) , 2013, DOI: 10.12677/MM.2013.31003
Abstract:
论文基于卢卡斯内生增长模型分析北京市人力资本与经济增长的关系,通过对1996~2007年北京市人力资本相关数据进行计量分析得出,北京市属典型的专业人力资本大于一般人力资本结构类型,尤其是专业人力资本,对北京市经济增长的贡献率达到54.8%,论文对如何进一步优化北京市人力资本结构路径进行了讨论。
The paper, based on the Lucas endogenous growth model to analyze the relationship between the human capital and the economic growth in the city of Beijing, drawn through the econometric analysis on the 1996-2007 Beijing human capital related data. Beijing is a typical professional human capital which is greater than the general type of human capital structure. Especially the professional human capital contribution to Beijing’s economic growth rate reached 54.8%. In addition, the paper also analyzes how to further optimize the human capital structure path in Beijing.
网络语言的历时发展及其顺应性解读
The Diachronic Development and Adaptable Interpretation of Internet Language
 [PDF]

林纲,
Modern Linguistics (ML) , 2014, DOI: 10.12677/ML.2014.24023
Abstract:
网络语言在中国已经发展了二十年的时间。网络语言的研究重点在于网络词汇,同时以时间为参照进行纵向比较,结合现代汉语理论与语言顺应论分析特点变化原因、总结网络语言发展规律,从而预测网络语言发展的未来。本文认为网络语言将在不远的未来对现代汉语产生更加积极而深刻的影响,网络平台将成为现代汉语发展的培养皿。
It has been twenty years since the development of Internet language in China. The emphasis of this research is Internet vocabularies and comparisons are made in a vertical way, taking the time as a reference. Through combining theories of Modern Chinese Language with the Adaptation Theory of Language, this paper aims to analyze the reasons for Internet language’s characteristic devel-opment and to conclude the development rules of Internet language so as to predict the future of it. This paper considers that Internet language will exert a profounder influence on Modern Chinese Language in the near future. And the Internet platform is certain to be a petri dish for the future development of Modern Chinese Language.
地榆炒炭的组织结构及化学变化
,卢长庆
中国中药杂志 , 1988,
Abstract: 通过组织结构及薄层层析等实验研究,证明地榆炒炭前后药材内部变化。地榆炭与原药材比较,草酸钙结晶明显减少,部分组织炭化,有效成分地榆皂甙及鞣质受到一定程度破坏,但又产生了一些新的成分。
重复购买行为与新产品创新扩散———基于产品复杂性的视角
郭斌,郭琳,
浙江大学学报(人文社会科学版) , 2014,
Abstract: ?新产品扩散研究目前大多数是基于单次采纳行为的研究,而对重复购买行为及其对新产品创新扩散的影响关注不足。通过将产品复杂性视角引入采纳者与非采纳者的动态知识转移过程,建立基于无标度网络结构的三阶段扩散仿真模型来分析重复购买对新产品扩散的影响后发现:第一,重复购买对新产品扩散规模和扩散速度的影响并不是简单地随重复购买比例的提高而增加|第二,产品复杂性对重复购买与新产品的扩散规模和扩散速度起到相反的调节作用|第三,当负面口碑的作用减弱时,重复购买对新产品扩散速度的影响会降低。
一种结合深度学习和集成学习的情感分析模型
金志刚,,
- , 2018, DOI: 10.11918/j.issn.0367-6234.201709078
Abstract: 随着社交媒体的不断发展, 用户评价已成为网络决策的关键因素.为了准确分析社交媒体用户评价的情感倾向性, 更好地推进舆情分析、推荐算法等工作, 本文通过对Bi-LSTM模型和Bagging算法的改进, 提出了一种新的情感分析模型—Bi-LSTMM-B模型.该模型的特点在于将深度学习模型可提取抽象特征的优势和集成学习多分类器共同决策的思想相结合.一方面在Bi-LSTM模型的基础上引入Maxout神经元, 构建Bi-LSTMM模型, 解决随机梯度下降算法中存在的梯度弥散问题, 更好地优化训练过程.另一方面, 模型基于Bagging算法训练多个情感分类器, 根据分类器性能优劣利用袋外数据为每个分类器分配指定类别的权重, 并提出相应的改进投票策略, 增强了模型的泛化能力.实验结果表明:本文提出的Bi-LSTMM-B模型相比于传统的LSTM模型准确率提高12.08%, 其中Maxout神经元的引入对情感分析准确率有8.28%的相对改善效果, 改进后的投票策略对准确率有4.06%的相对改善效果, 并在召回率和F值两项指标上均优于其他对比模型.由此证明, 深度学习模型和集成学习思想相结合可提高情感分析的准确率, 并具有一定的研究价值
With the development of social media, users' evaluations have become a key factor in network decision-making.Owing to the necessity of making a more accurate analysis on the emotional tendency of social media users' evaluations as well as promoting public opinion analysis and recommendation algorithms, a sentiment analysis model called Bi-LSTMM-B (Bi-directional Long Short Term Memory Model with Maxout neurons in Bagging algorithm) is proposed.With the feature of combining deep learning model and the idea of ensemble learning, the model improves the Bi-LSTM model and the Bagging algorithm.On the one hand, the Bi-LSTMM model introduces the Maxout neural into the Bi-LSTM model to solve the vanishing gradient problem during the stochastic gradient descent training and optimize the training process.On the other hand, multiple emotional classifiers were trained at the foundation of the Bagging algorithm.The out of bag data assigns the weight for each classifier on specified category according to their performance.Hence the voting strategy is improved to enhance the generalization ability of the model.The experimental results indicate that the accuracy of the Bi-LSTMM-B model is improved by 12.08% compared to the traditional LSTM model.It is also superior to other contrast models in the recall rate and F value.Therein, the introduction of Maxout neurons has a relative improvement effect of 8.28% on the accuracy of sentiment analysis, while the improved voting strategy accounts for 4.06% on the accuracy.Thus, it proves that combining deep learning and ensemble learning contributes to the improvement of the accuracy of sentiment analysis, which shows some value in research.
中长期水文预报的最优组合模型研究
Mid and Long-Term Hydrological Forecasting Using Optimal Combined Model
 [PDF]

, 刘攀, 黄焕坤, 李立平, 虞云飞,
Journal of Water Resources Research (JWRR) , 2013, DOI: 10.12677/JWRR.2013.26053
Abstract: 本文建立了径流中长期预报的自回归、季节性自回归、门限自回归、最近邻抽样回归、人工神经网络、支持向量机等六种模型,并对这些模型结果进行综合,开展最优组合预报。以飞来峡水库为研究实例,选取平均绝对误差和均方误差作为评价指标,发现人工神经网络模型模拟精度较高;支持向量机模型模拟精度高、且具有最好的预报性能;最优组合预报模型综合各单一预报模型的优点,结果稳健、通用性强。
This paper applies six models, including the autoregressive model, the seasonal autoregressive model, the threshold autoregressive model, the nearest neighbor bootstrap regressive model, the artificial neural network model and the support vector machine model into the mid and long-term hydrological forecasting. Based on Feilaixia reservoir project, the results show that the artificial neural network model is able to time series very well. The support vector machine model has the powerful ability of not only the simulation but also the forecasting. The results of those models were combined by the optimal combined forecasting model. The mean absolute error and the mean square error are selected as the measurements. Relying on the merits of each single model, the results of the optimal combined forecasting model work very well and are very well in robustness.
人体、猕猴和家兔白血细胞染色体辐射敏感性的比较研究

科学通报 , 1965,
Abstract: 近年来,辐射对人类遗传的危害问题已广泛地受到重视。因此正确估计人类辐射遗传的危害性,以及选择与人类辐射敏感性相近的实验动物而进行各种哺乳动物的比较研究是十分重要的。大量的细胞遗传学实验证明,辐射诱发的染色体畸变和有机体的辐射敏感性有定量的关系,因而染色体畸变已被作为测定动物辐射敏感性普温采用的判据。随着组织培养技术的发展,直接比较人体组织与其他动物的辐射敏感性已成为现实。
Page 1 /29311
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.