Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Search Results: 1 - 7 of 7 matches for " phototransduction "
All listed articles are free for downloading (OA Articles)
Page 1 /7
Display every page Item
Drosophila king tubby (ktub) mediates light-induced rhodopsin endocytosis and retinal degeneration
Chen Shu-Fen,Tsai Yu-Chen,Fan Seng-Sheen
Journal of Biomedical Science , 2012, DOI: 10.1186/1423-0127-19-101
Abstract: Background The tubby (tub) and tubby-like protein (tulp) genes encode a small family of proteins found in many organisms. Previous studies have shown that TUB and TULP genes in mammalian involve in obesity, neural development, and retinal degeneration. The purpose of this study was to investigate the role of Drosophila king tubby (ktub) in rhodopsin 1 (Rh1) endocytosis and retinal degeneration upon light stimulation. Results Drosophila ktub mutants were generated using imprecise excision. Wild type and mutant flies were raised in dark or constant light conditions. After a period of light stimulation, retinas were dissected, fixed and stained with anti-Rh1 antibody to reveal Rh1 endocytosis. Confocal and transmission electron microscope were used to examine the retinal degeneration. Immunocytochemical analysis shows that Ktub is expressed in the rhabdomere domain under dark conditions. When flies receive light stimulation, the Ktub translocates from the rhabdomere to the cytoplasm and the nucleus of the photoreceptor cells. Wild type photoreceptors form Rh1-immunopositive large vesicles (RLVs) shortly after light stimulation. In light-induced ktub mutants, the majority of Rh1 remains at the rhabdomere, and only a few RLVs appear in the cytoplasm of photoreceptor cells. Mutation of norpA allele causes massive Rh1 endocytosis in light stimulation. In ktub and norpA double mutants, however, Rh1 endocytosis is blocked under light stimulation. This study also shows that ktub and norpA double mutants rescue the light-induced norpA retinal degeneration. Deletion constructs further demonstrate that the Tubby domain of the Ktub protein participates in an important role in Rh1 endocytosis. Conclusions The results in this study delimit the novel function of Ktub in Rh1 endocytosis and retinal degeneration.
Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes
Schnitzler Christine E,Pang Kevin,Powers Meghan L,Reitzel Adam M
BMC Biology , 2012, DOI: 10.1186/1741-7007-10-107
Abstract: Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light production and light reception may be functionally connected in ctenophore photocytes. We also present genomic evidence of a complete ciliary phototransduction cascade in Mnemiopsis. Conclusions This study elucidates the genomic organization, evolutionary history, and developmental expression of photoprotein and opsin genes in the ctenophore Mnemiopsis leidyi, introduces a novel dual role for ctenophore photocytes in both bioluminescence and phototransduction, and raises the possibility that light production and light reception are linked in this early-branching non-bilateri
Multiphoton response of retinal rod photoreceptors
Vasilios Alexiades,Harihar Khanal
Electronic Journal of Differential Equations , 2007,
Abstract: Phototransduction is the process by which light is converted into an electrical response in retinal photoreceptors. Rod photoreceptors contain a stack of (about 1000) disc membranes packed with photopigment rhodopsin molecules, which absorb the photons. We present computational experiments which show the profound effect on the response of the distances (how many discs apart) photons happen to be absorbed at. This photon-distribution effect alone can account for much of the observed variability in response.
Dysfunction of outer segment guanylate cyclase caused by retinal disease related mutations
Patrick Z?gel,Karl-Wilhelm Koch
Frontiers in Molecular Neuroscience , 2014, DOI: 10.3389/fnmol.2014.00004
Abstract: Membrane bound guanylate cyclases are expressed in rod and cone cells of the vertebrate retina and mutations in several domains of rod outer segment guanylate cyclase 1 (ROS-GC1 encoded by the gene GUCY2D) correlate with different forms of retinal degenerations. In the present work we investigated the biochemical consequences of three point mutations, one is located in position P575L in the juxtamembrane domain close to the kinase homology domain and two are located in the cyclase catalytic domain at H1019P and P1069R. These mutations correlate with various retinal diseases like autosomal dominant progressive cone degeneration, e.g., Leber Congenital Amaurosis and a juvenile form of retinitis pigmentosa. Wildtype and mutant forms of ROS-GC1 were heterologously expressed in HEK cells, their cellular distribution was investigated and activity profiles in the presence and absence of guanylate cyclase-activating proteins were measured. The mutant P575L was active under all tested conditions, but it displayed a twofold shift in the Ca2+-sensitivity, whereas the mutant P1069R remained inactive despite normal expression levels. The mutation H1019P caused the cyclase to become more labile. The different biochemical consequences of these mutations seem to reflect the different clinical symptoms. The mutation P575L induces a dysregulation of the Ca2+-sensitive cyclase activation profile causing a slow progression of the disease by the distortion of the Ca2+-cGMP homeostasis. In contrast, a strong reduction in cGMP synthesis due to an inactive or structurally unstable ROS-GC1 would trigger more severe forms of retinal diseases.
Cnidocyte discharge is regulated by light and opsin-mediated phototransduction
David C Plachetzki, Caitlin R Fong, Todd H Oakley
BMC Biology , 2012, DOI: 10.1186/1741-7007-10-17
Abstract: Here we report that light also regulates cnidocyte function. We show that non-cnidocyte neurons located in battery complexes of the freshwater polyp Hydra magnipapillata specifically express opsin, cyclic nucleotide gated (CNG) ion channel and arrestin, which are all known components of bilaterian phototransduction cascades. We infer from behavioral trials that different light intensities elicit significant effects on cnidocyte discharge propensity. Harpoon-like stenotele cnidocytes show a pronounced diminution of discharge behavior under bright light conditions as compared to dim light. Further, we show that suppression of firing by bright light is ablated by cis-diltiazem, a specific inhibitor of CNG ion channels.Our results implicate an ancient opsin-mediated phototransduction pathway and a previously unknown layer of sensory complexity in the control of cnidocyte discharge. These findings also suggest a molecular mechanism for the regulation of other cnidarian behaviors that involve both photosensitivity and cnidocyte function, including diurnal feeding repertoires and/or substrate-based locomotion. More broadly, our findings highlight one novel, non-visual function for opsin-mediated phototransduction in a cnidarian, the origins of which might have preceded the evolution of cnidarian eyes.Animal sensory systems provide a useful model for understanding the origins and evolution of complex traits. Of particular interest are questions regarding (1) the ancestral composition of sensory signaling pathways, and (2) the ancestral function of such pathways. While a detailed understanding of the signaling pathways and cell types that function in the diversity of animal sensory systems is becoming increasingly common, most work in sensory molecular biology has been confined to an exceedingly small taxonomic sample of model bilaterian species. In order to gain insights into the evolutionary origins and ancestral functions of bilaterian sensory systems we must focus our at
ROS-GC interlocked Ca2+-sensor S100B protein signaling in cone photoreceptors: review
Rameshwar K. Sharma,Clint L. Makino,David Hicks,Teresa Duda
Frontiers in Molecular Neuroscience , 2014, DOI: 10.3389/fnmol.2014.00021
Abstract: Photoreceptor rod outer segment membrane guanylate cyclase (ROS-GC) is central to visual transduction; it generates cyclic GMP, the second messenger of the photon signal. Photoexcited rhodopsin initiates a biochemical cascade that leads to a drop in the intracellular level of cyclic GMP and closure of cyclic nucleotide gated ion channels. Recovery of the photoresponse requires resynthesis of cyclic GMP, typically by a pair of ROS-GCs, 1 and 2. In rods, ROS-GCs exist as complexes with guanylate cyclase activating proteins (GCAPs), which are Ca2+-sensing elements. There is a light-induced fall in intracellular Ca2+. As Ca2+ dissociates from GCAPs in the 20–200 nM range, ROS-GC activity rises to quicken the photoresponse recovery. GCAPs then progressively turn down ROS-GC activity as Ca2+ and cyclic GMP levels return to baseline. To date, GCAPs mediate the only known mechanism of ROS-GC regulation in the photoreceptors. However, in mammalian cone outer segments, cone synapses and ON bipolar cells, another Ca2+ sensor protein, S100B, complexes with ROS-GC1 and senses the Ca2+ signal with a K1/2 of 400 nM. Unlike GCAPs, S100B stimulates ROS-GC activity when Ca2+ is bound. Thus, the ROS-GC system in cones functions as a Ca2+ bimodal switch; with rising intracellular Ca2+, its activity is first turned down by GCAPs and then turned up by S100B. This presentation provides a historical perspective on the role of S100B in the photoreceptors, offers a pictorial model for the “bimodal” operation of the ROS-GC switch and projects future tasks that are needed to understand its operation. Some accounts of this review have been adopted from the original publications of these authors.
Evaluating the Signal Processing Capacities of Post-Mortem Cerebral Cortical Tissue by Artificial Phototransduction of Dynamic Visual Stimuli  [PDF]
Nicolas Rouleau, Justin N. Costa, Michael A. Persinger
Open Journal of Biophysics (OJBIPHY) , 2017, DOI: 10.4236/ojbiphy.2017.71001
Abstract: The signal processing function of human cerebral cortical tissues is determined by the regional cytoarchitectures distributed throughout the brain. Based upon this assumption, we pursued the hypothesis that residual microstructure within the primary and associative visual cortices of a fixed, post-mortem whole human brain would process electrical signals differentially. To this end, we designed and engineered a very simple brain-photocell interface. Photostimuli, presented as either periodic flashes or as dynamic visual images, were transduced by photocells attached to the optic nerve of a post-mortem human brain specimen. The novel approach revealed that microvolt fluctuations within the primary and associative visual cortices could be discriminated. Simple light-dark discrimination was noted for the primary visual area (BA17) whereas within the right occipito-parietal cortices of the dorsal visual stream (BA19, BA7), spectral power of microvolt fluctuations could discriminate moving visual stimuli from those which were non-moving. Discriminant analysis classified movement represented within the right parietal lobe with 80% success. Together, the results suggest that artificially generated electrical signals are processed differentially by alternative cortical regions in the post-mortem brain.
Page 1 /7
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.