Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 11 )

2019 ( 44 )

2018 ( 80 )

2017 ( 94 )

Custom range...

Search Results: 1 - 10 of 18663 matches for " Yves ; LE GAUFFRE "
All listed articles are free for downloading (OA Articles)
Page 1 /18663
Display every page Item
Gestion patrimoniale des réseaux d’assainissement : de l’état des réseaux à la planification de leur réhabilitation Outils, méthodes et perspectives
WEREY, Cathy ; LE GAT, Yves ; LE GAUFFRE, Pascal ; ROZAN, Anne ; WITTNER, Christophe ; NIRSIMLOO, Kévin ; LECLERC, Cyril
Sciences Eaux & Territoires : la Revue du IRSTEA , 2012,
Abstract: En France, la gestion patrimoniale des réseaux d’assainissement est une préoccupation croissante. Certains réseaux commencent en effet à dater et vont nécessiter des renouvellements importants et co teux pour les décennies à venir. à travers leur mise en uvre sur les réseaux de Caen et de Bordeaux, cet article présente deux modèles complémentaires, Indigau et GompitZ, permettant de décrire l’état du réseau et de prioriser les tron ons à réhabiliter.
Mathématique et statistique en science de l?information et en science de la communication: infométrie mathématique et infométrie statistique des revues scientifiques
Le Coadic, Yves F.;
Ciência da Informa??o , 2005, DOI: 10.1590/S0100-19652005000300002
Abstract: infometrics, the mathematical and statistical study of information processes, is a new promising field of research in information science. advantages but also pitfalls and misuses of mathematics and statistics in information science are presented. a selection of applications to scientific journals coming from mathematical infometrics and statistical infometrics (mono and bidimensionnal) illustrate the efficiency of these methods.
Carto-humeur, carto-humour: France, ta Bretagne f… le camp
Mappemonde , 1987,
Markov loops and renormalization
Yves Le Jan
Mathematics , 2008,
Abstract: We study Poissonian ensembles of Markov loops and the associated renormalized self-intersection local times.
Markov loops, determinants and Gaussian fields
Yves Le Jan
Mathematics , 2006,
Abstract: The purpose of this note is to explore some simple relations between loop measures, determinants, and Gaussian Markov fields.
Markov paths, loops and fields
Yves Le Jan
Mathematics , 2008,
Abstract: This is an extended version of a series of lectures given in St Flour. It includes a discussion of relations between the occupation field of Markov loops with the corresponding free field.
Dynkin's isomorphism without symmetry
Yves Le Jan
Mathematics , 2006,
Abstract: The purpose of this note is to extend Dynkin's isomorphim involving functionals of the occupation field of a symmetric Markov processes and of the associated Gaussian field to a suitable class of non symmetric Markov processes.
Markov loops, complex free field and Eulerian circuits
Yves Le Jan
Mathematics , 2014,
Abstract: We study the complex free field associated with a symmetric Markov chain. Applications are given to loop ensembles, second Ray Knight theorem and random Eulerian circuits.
A non-equilibrium system in a steady state: wind waves in the open ocean
Yves Pomeau Yves,Martine Le Berre
Physics , 2010,
Abstract: We derive scaling laws for the steady spectrum of wind excited waves, assuming two inviscid fluids (air and water) and no surface tension, an approximation valid at large speeds. In this limit there exists an unique (small) dimensionless parameter $\epsilon$, the ratio of the mass densities of the two fluids, air and water, independently of the wind speed. The smallness of $\epsilon$ allows to derive some important average properties of the wave system. The average square slope of the waves is of order $|ln (\epsilon^2)|^{-1}$, a small but not very small quantity. This supports the often used assumption of small nonlinearity in the wave-wave interaction. We introduce an equation to be satisfied by the two-point correlation of the height fluctuations.
Fortelling catastrophes?
Yves Pomeau,Martine Le Berre
Physics , 2011,
Abstract: A generic saddle-node bifurcation is proposed to modelize fast transitions of finite amplitude arising in geophysical (and perhaps other) contexts, when they result from the intrinsic dynamics of the system. The fast transition is generically preceded by a precursor phase which is less rapid, that we characterize. In this model, if an external source of noise exist, the correlation length of the fluctuations increases before the transition, and its spectrum tends to drift towards lower frequencies. This change in the fluctuations could be a way of detecting catastrophic events before they happen.
Page 1 /18663
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.