oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2018 ( 9 )

2017 ( 24 )

2016 ( 11 )

2015 ( 99 )

Custom range...

Search Results: 1 - 10 of 1067 matches for " Yuki Kuwano "
All listed articles are free for downloading (OA Articles)
Page 1 /1067
Display every page Item
NF90 in Posttranscriptional Gene Regulation and MicroRNA Biogenesis
Kiyoshi Masuda,Yuki Kuwano,Kensei Nishida,Kazuhito Rokutan,Issei Imoto
International Journal of Molecular Sciences , 2013, DOI: 10.3390/ijms140817111
Abstract: Gene expression patterns are effectively regulated by turnover and translation regulatory (TTR) RNA-binding proteins (RBPs). The TTR-RBPs control gene expression at posttranscriptional levels, such as pre-mRNA splicing, mRNA cytoplasmic export, turnover, storage, and translation. Double-stranded RNA binding proteins (DSRBPs) are known to regulate many processes of cellular metabolism, including transcriptional control, translational control, mRNA processing and localization. Nuclear factor 90 (NF90), one of the DSRBPs, is abundantly expressed in vertebrate tissue and participates in many aspects of RNA metabolism. NF90 was originally purified as a component of a DNA binding complex which binds to the antigen recognition response element 2 in the interleukin 2 promoter. Recent studies have provided us with interesting insights into its possible physiological roles in RNA metabolism, including transcription, degradation, and translation. In addition, it was shown that NF90 regulates microRNA expression. In this review, we try to focus on the function of NF90 in posttranscriptional gene regulation and microRNA biogenesis.
Autism-Associated Gene Expression in Peripheral Leucocytes Commonly Observed between Subjects with Autism and Healthy Women Having Autistic Children
Yuki Kuwano, Yoko Kamio, Tomoko Kawai, Sakurako Katsuura, Naoko Inada, Akiko Takaki, Kazuhito Rokutan
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0024723
Abstract: Autism spectrum disorder (ASD) is a severe neuropsychiatric disorder which has complex pathobiology with profound influences of genetic factors in its development. Although the numerous autism susceptible genes were identified, the etiology of autism is not fully explained. Using DNA microarray, we examined gene expression profiling in peripheral blood from 21 individuals in each of the four groups; young adults with ASD, age- and gender-matched healthy subjects (ASD control), healthy mothers having children with ASD (asdMO), and asdMO control. There was no blood relationship between ASD and asdMO. Comparing the ASD group with control, 19 genes were found to be significantly changed. These genes were mainly involved in cell morphology, cellular assembly and organization, and nerve system development and function. In addition, the asdMO group possessed a unique gene expression signature shown as significant alterations of protein synthesis despite of their nonautistic diagnostic status. Moreover, an ASD-associated gene expression signature was commonly observed in both individuals with ASD and asdMO. This unique gene expression profiling detected in peripheral leukocytes from affected subjects with ASD and unaffected mothers having ASD children suggest that a genetic predisposition to ASD may be detectable even in peripheral cells. Altered expression of several autism candidate genes such as FMR-1 and MECP2, could be detected in leukocytes. Taken together, these findings suggest that the ASD-associated genes identified in leukocytes are informative to explore the genetic, epigenetic, and environmental background of ASD and might become potential tools to assess the crucial factors related to the clinical onset of the disorder.
The RNA binding protein HuR differentially regulates unique subsets of mRNAs in estrogen receptor negative and estrogen receptor positive breast cancer
Robert Calaluce, Matthew M Gubin, J Wade Davis, Joseph D Magee, Jing Chen, Yuki Kuwano, Myriam Gorospe, Ulus Atasoy
BMC Cancer , 2010, DOI: 10.1186/1471-2407-10-126
Abstract: The ribonomic approach, utilizing RNA immunoprecipitation hybridized to microarray (RIP-Chip), provides global identification of putative endogenous mRNA targets of different RBPs. HuR is an RBP that binds to the AU-rich elements (ARE) of labile mRNAs, such as proto-oncogenes, facilitating their translation into protein. HuR has been shown to play a role in cancer progression and elevated levels of cytoplasmic HuR directly correlate with increased invasiveness and poor prognosis for many cancers, including those of the breast. HuR has been described to control genes in several of the acquired capabilities of cancer and has been hypothesized to be a tumor-maintenance gene, allowing for cancers to proliferate once they are established.We used HuR RIP-Chip as a comprehensive and systematic method to survey breast cancer target genes in both MCF-7 (estrogen receptor positive, ER+) and MDA-MB-231 (estrogen receptor negative, ER-) breast cancer cell lines. We identified unique subsets of HuR-associated mRNAs found individually or in both cell types. Two novel HuR targets, CD9 and CALM2 mRNAs, were identified and validated by quantitative RT-PCR and biotin pull-down analysis.This is the first report of a side-by-side genome-wide comparison of HuR-associated targets in wild type ER+ and ER- breast cancer. We found distinct, differentially expressed subsets of cancer related genes in ER+ and ER- breast cancer cell lines, and noted that the differential regulation of two cancer-related genes by HuR was contingent upon the cellular environment.Over the past decade array technologies have provided several new means for profiling global changes in gene expression. The power of DNA microarrays is perhaps best illustrated in the way it has been used to differentiate treatment responses in patient populations. Individualized and targeted therapy for several tumors, based upon underlying differences at the molecular level among gene expression profiles, is beginning to replace the t
Chronic Academic Stress Increases a Group of microRNAs in Peripheral Blood
Manami Honda, Yuki Kuwano, Sakurako Katsuura-Kamano, Yoshiko Kamezaki, Kinuyo Fujita, Yoko Akaike, Shizuka Kano, Kensei Nishida, Kiyoshi Masuda, Kazuhito Rokutan
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0075960
Abstract: MicroRNAs (miRNAs) play key roles in regulation of cellular processes in response to changes in environment. In this study, we examined alterations in miRNA profiles in peripheral blood from 25 male medical students two months and two days before the National Examination for Medical Practitioners. Blood obtained one month after the examination were used as baseline controls. Levels of seven miRNAs (miR-16, -20b, -26b, -29a, -126, -144 and -144*) were significantly elevated during the pre-examination period in association with significant down-regulation of their target mRNAs (WNT4, CCM2, MAK, and FGFR1 mRNAs) two days before the examination. State anxiety assessed two months before the examination was positively and negatively correlated with miR-16 and its target WNT4 mRNA levels, respectively. Fold changes in miR-16 levels from two days before to one month after the examination were inversely correlated with those in WNT4 mRNA levels over the same time points. We also confirmed the interaction between miR-16 and WNT4 3′UTR in HEK293T cells overexpressing FLAG-tagged WNT4 3′UTR and miR-16. Thus, a distinct group of miRNAs in periheral blood may participate in the integrated response to chronic academic stress in healthy young men.
An Empirical Investigation of Common Sense of Land Use from a Statistical Approach  [PDF]
Yuki Hanashima
Journal of Geographic Information System (JGIS) , 2012, DOI: 10.4236/jgis.2012.42014
Abstract: Recently, ontological study has been one of the key concerns of geographic information science, a number of studies have been conducted in both of philosophical and knowledge engineering approach. Some studies pointed out the importance of human cognition and social context for development of ontologies. This paper presents empirical investigation of common sense of land use categories for development of suitable ontologies for each cultural or speech communities. Distinctions and characteristics in perceiving land use categories were described by a psychological method that was submitted to Japanese graduate and undergraduate students. In addition the results were analyzed using corresponddence analysis, a statistical technique for categorical data. This analysis serves to clarify the dominant determining factors for land use categories.
Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation
Osamu Kuwano,Shingo Yoshida
International Journal of Geophysics , 2012, DOI: 10.1155/2012/290915
Abstract: Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface.
TP53 Mutations in Nonsmall Cell Lung Cancer
Akira Mogi,Hiroyuki Kuwano
Journal of Biomedicine and Biotechnology , 2011, DOI: 10.1155/2011/583929
Abstract: The tumor suppressor gene TP53 is frequently mutated in human cancers. Abnormality of the TP53 gene is one of the most significant events in lung cancers and plays an important role in the tumorigenesis of lung epithelial cells. Human lung cancers are classified into two major types, small cell lung cancer (SCLC) and nonsmall cell lung cancer (NSCLC). The latter accounts for approximately 80% of all primary lung cancers, and the incidence of NSCLC is increasing yearly. Most clinical studies suggest that NSCLC with TP53 alterations carries a worse prognosis and may be relatively more resistant to chemotherapy and radiation. A deep understanding of the role of TP53 in lung carcinogenesis may lead to a more reasonably targeted clinical approach, which should be exploited to enhance the survival rates of patients with lung cancer. This paper will focus on the role of TP53 in the molecular pathogenesis, epidemiology, and therapeutic strategies of TP53 mutation in NSCLC.
Catalytic Asymmetric Hydrogenation of 3-Substituted Benzisoxazoles
Ryuhei Ikeda,Ryoichi Kuwano
Molecules , 2012, DOI: 10.3390/molecules17066901
Abstract: A variety of 3-substituted benzisoxazoles were reduced with hydrogen using the chiral ruthenium catalyst, {RuCl(p-cymene)[(R,R)-(S,S)-PhTRAP]}Cl. The ruthenium-catalyzed hydrogenation proceeded in high yield in the presence of an acylating agent, affording a-substituted o-hydroxybenzylamines with up to 57% ee. In the catalytic transformation, the N–O bond of the benzisoxazole substrate is reductively cleaved by the ruthenium complex under the hydrogenation conditions. The C–N double bond of the resulting imine is saturated stereoselectively through the PhTRAP–ruthenium catalysis. The hydrogenation produces chiral primary amines, which may work as catalytic poisons, however, the amino group of the hydrogenation product is rapidly acylated when the reaction is conducted in the presence of an appropriate acylating agent, such as Boc2O or Cbz-OSu.
Changes in Electrokinetic Coupling Coefficients of Granite under Triaxial Deformation
Osamu Kuwano,Shingo Yoshida
International Journal of Geophysics , 2012, DOI: 10.1155/2012/290915
Abstract: Electrokinetic phenomena are believed to be the most likely origin of electromagnetic signals preceding or accompanying earthquakes. The intensity of the source current due to the electrokinetic phenomena is determined by the fluid flux and the electrokinetic coupling coefficient called streaming current coefficient; therefore, how the coefficient changes before rupture is essential. Here, we show how the electrokinetic coefficients change during the rock deformation experiment up to failure. The streaming current coefficient did not increase before failure, but continued to decrease up to failure, which is explained in terms of the elastic closure of capillary. On the other hand, the streaming potential coefficient, which is the product of the streaming current coefficient and bulk resistivity of the rock, increased at the onset of dilatancy. It may be due to change in bulk resistivity. Our result indicates that the zeta potential of the newly created surface does not change so much from that of the preexisting fluid rock interface. 1. Introduction Electrokinetic phenomena occur when an electrolyte flows along charged solid surfaces. For several decades, these phenomena have been of interest to geophysicists in many subfields. Observed self-potential has been associated with geothermal fields (e.g., [1, 2]), volcanic activity and topography (e.g., [3–6]), and shallow ground water flow (e.g., [7, 8]). In numerical modelings, quantitative interpretation of self-potential observed in geothermal and volcanic areas and modelings in hydrogeophysics have been studied (e.g., [9–13]). Electrokinetic phenomena are also believed to be the most likely origin of the observed electromagnetic signals preceding or accompanying earthquakes. Mizutani et al. [14] first proposed a model: during dilatancy stage, which is assumed to precede earthquakes [15, 16], pore pressure in the dilatant region decreases and water flows into this region from the surrounding area, generating electromagnetic precursors to earthquakes due to electrokinetic phenomena. To provide an appropriate interpretation of field observations, a better understanding of the physics of electrokinetic effect at the level of the rock-fluid interface and at the level of the rock sample is required. In laboratory experiments, zeta potential and streaming potential coefficients, fundamental quantities that characterize the electrokinetic effect, were measured for crushed rocks (e.g., [5, 17–21]) and for natural intact rocks (e.g., [22–29]) to determine the electrokinetic parameters as a function of pH,
p16INK4a Translation Suppressed by miR-24
Ashish Lal, Hyeon Ho Kim, Kotb Abdelmohsen, Yuki Kuwano, Rudolf Pullmann, Subramanya Srikantan, Ramesh Subrahmanyam, Jennifer L. Martindale, Xiaoling Yang, Fariyal Ahmed, Francisco Navarro, Derek Dykxhoorn, Judy Lieberman, Myriam Gorospe
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0001864
Abstract: Background Expression of the tumor suppressor p16INK4a increases during aging and replicative senescence. Methodology/Principal Findings Here, we report that the microRNA miR-24 suppresses p16 expression in human diploid fibroblasts and cervical carcinoma cells. Increased p16 expression with replicative senescence was associated with decreased levels of miR-24, a microRNA that was predicted to associate with the p16 mRNA coding and 3′-untranslated regions. Ectopic miR-24 overexpression reduced p16 protein but not p16 mRNA levels. Conversely, introduction of antisense (AS)-miR-24 blocked miR-24 expression and markedly enhanced p16 protein levels, p16 translation, and the production of EGFP-p16 reporter bearing the miR-24 target recognition sites. Conclusions/Significance Together, our results suggest that miR-24 represses the initiation and elongation phases of p16 translation.
Page 1 /1067
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.