Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 3 )

2019 ( 571 )

2018 ( 706 )

2017 ( 697 )

Custom range...

Search Results: 1 - 10 of 401361 matches for " Yaseen M Arabi "
All listed articles are free for downloading (OA Articles)
Page 1 /401361
Display every page Item
Critical care management of severe traumatic brain injury in adults
Samir H Haddad, Yaseen M Arabi
Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine , 2012, DOI: 10.1186/1757-7241-20-12
Abstract: Severe traumatic brain injury (TBI), defined as head trauma associated with a Glasgow Coma Scale (GCS) score of 3 to 8 [1], is a major and challenging problem in critical care medicine. Over the past twenty years, much has been learned with a remarkable progress in the critical care management of severe TBI. In 1996, the Brain Trauma Foundation (BTF) published the first guidelines on the management of severe TBI [2] that was accepted by the American Association of Neurological Surgeons and endorsed by the World Health Organization Committee in Neurotraumatology. The second revised edition was published in 2000 [3] with an update in 2003, and the 3rd edition was published in 2007 [4]. Several studies have reported the impact of implementation of guidelines-based management protocols for severe TBI on patient's treatment and outcome [5,6]. These studies have clearly demonstrated that the implementation of protocols for the management of severe TBI, incorporating recommendations from the guidelines, is associated with substantially better outcomes such as mortality rate, functional outcome scores, length of hospital stay, and costs [7,8]. However, there is still considerable and wide institutional variation in the care of patients with severe TBI.In general, TBI is divided into two discrete periods: primary and secondary brain injury. The primary brain injury is the physical damage to parenchyma (tissue, vessels) that occurs during traumatic event, resulting in shearing and compression of the surrounding brain tissue. The secondary brain injury is the result of a complex process, following and complicating the primary brain injury in the ensuing hours and days. Numerous secondary brain insults, both intracranial and extracranial or systemic, may complicate the primarily injured brain and result in secondary brain injury. Secondary, intracranial brain insults include cerebral edema, hematomas, hydrocephalus, intracranial hypertension, vasospasm, metabolic derangement, e
Association between statin therapy and outcomes in critically ill patients: a nested cohort study
Shmeylan A Al Harbi, Hani M Tamim, Yaseen M Arabi
BMC Pharmacology and Toxicology , 2011, DOI: 10.1186/1472-6904-11-12
Abstract: This was a nested cohort study within two randomised controlled trials conducted in a tertiary care ICU. All 763 patients who participated in the two trials were included in this study. Of these, 107 patients (14%) received statins during their ICU stay. The primary endpoint was all-cause ICU and hospital mortality. Secondary endpoints included the development of sepsis and severe sepsis during the ICU stay, the ICU length of stay, the hospital length of stay, and the duration of mechanical ventilation. Multivariate logistic regression was used to adjust for clinically and statistically relevant variables.Statin therapy was associated with a reduction in hospital mortality (adjusted odds ratio [aOR] = 0.60, 95% confidence interval [CI] 0.36-0.99). Statin therapy was associated with lower hospital mortality in the following groups: patients >58 years of age (aOR = 0.58, 95% CI 0.35-0.97), those with an acute physiology and chronic health evaluation (APACHE II) score >22 (aOR = 0.54, 95% CI 0.31-0.96), diabetic patients (aOR = 0.52, 95% CI 0.30-0.90), patients on vasopressor therapy (aOR = 0.53, 95% CI 0.29-0.97), those admitted with severe sepsis (aOR = 0.22, 95% CI 0.07-0.66), patients with creatinine ≤100 μmol/L (aOR = 0.14, 95% CI 0.04-0.51), and patients with GCS ≤9 (aOR = 0.34, 95% CI 0.17-0.71). When stratified by statin dose, the mortality reduction was mainly observed with statin equipotent doses ≥40 mg of simvastatin (aOR = 0.53, 95% CI 0.28-1.00). Mortality reduction was observed with simvastatin (aOR = 0.37, 95% CI 0.17-0.81) but not with atorvastatin (aOR = 0.80, 95% CI 0.84-1.46). Statin therapy was not associated with a difference in any of the secondary outcomes.Statin therapy during ICU stay was associated with a reduction in all-cause hospital mortality. This association was especially noted in high-risk subgroups. This potential benefit needs to be validated in a randomised, controlled trial.Statins, also known as 3-hydroxy-3-methylglutaryl coenzyme
Pro/Con debate: Should 24/7 in-house intensivist coverage be implemented?
Yaseen Arabi
Critical Care , 2008, DOI: 10.1186/cc6905
Abstract: Intensivist coverage traditionally has followed the 'business hours' model used in other professions, with reduced availability during weekends, weeknights, and holidays. This type of staffing would be appropriate if the need for the service were limited to business hours or if delaying the service (for example, from the night to the next morning) did not have any negative consequences. Clearly, this is not the case in critical care. First, critical illness does not recognize the boundaries of business hours, and therefore qualified intensivists need to be available around the clock. Studies have demonstrated that 66% to 69% of intensive care unit (ICU) admissions are admitted during off-hours [1,2]. Second, in no area more than in the ICU is the outcome of patients affected by providing the right treatment at the right time; delays in such treatment have been demonstrated to have negative consequences [3-5].Several studies have demonstrated increased mortality of acutely ill patients admitted during weekends, weeknights, and holidays, a phenomenon that has been attributed, at least in part, to lower staffing levels. A large Canadian study showed a significantly increased risk of death for patients admitted during weekends with several acute diagnoses, including ruptured abdominal aortic aneurysm, acute epi-glotitis, and pulmonary embolism [6]. A study from California showed higher adjusted mortality for patients admitted from the emergency department on weekends compared with those admitted on weekdays [7]. Of note, a larger 'weekend effect' was observed in major teaching hospitals [7]. Similarly, a Finnish study showed that weekend and weeknight ICU admissions were associated with increased mortality even after adjustment for severity of illness [8]. In a multi-center pediatric ICU study, emergency admissions during evening hours had a higher mortality, especially for patients admitted with shock, congenital heart disease, or after cardiac arrest [9]. Investigator
Scientific misconduct and medical publishing
Arabi Yaseen
Annals of Thoracic Medicine , 2007,
Venous Thromboembolism in Critically Ill Cirrhotic Patients: Practices of Prophylaxis and Incidence
Hasan M. Al-Dorzi,Hani M. Tamim,Abdulaziz S. Aldawood,Yaseen M. Arabi
Thrombosis , 2013, DOI: 10.1155/2013/807526
Abstract: Objectives. We compared venous thromboembolism (VTE) prophylaxis practices and incidence in critically ill cirrhotic versus noncirrhotic patients and evaluated cirrhosis as a VTE risk factor. Methods. A cohort of 798 critically ill patients followed for the development of clinically detected VTE were categorized according to the diagnosis of cirrhosis. VTE prophylaxis practices and incidence were compared. Results. Seventy-five (9.4%) patients had cirrhosis with significantly higher INR (2.2 ± 0.9 versus 1.3 ± 0.6, ), lower platelet counts (115,000 ± 90,000 versus 258,000 ± 155,000/μL, ), and higher creatinine compared to noncirrhotic patients. Among cirrhotics, 31 patients received only mechanical prophylaxis, 24 received pharmacologic prophylaxis, and 20 did not have any prophylaxis. Cirrhotic patients were less likely to receive pharmacologic prophylaxis (odds ratio, 0.08; 95% confidence interval (CI), 0.04–0.14). VTE occurred in only two (2.7%) cirrhotic patients compared to 7.6% in noncirrhotic patients ( ). The incidence rate was 2.2 events per 1000 patient-ICU days for cirrhotic patients and 3.6 events per 1000 patient-ICU days for noncirrhotics (incidence rate ratio, 0.61; 95% CI, 0.15–2.52). On multivariate Cox regression analysis, cirrhosis was not associated with VTE risk (hazard ratio, 0.40; 95% CI, 0.10–1.67). Conclusions. In critically ill cirrhotic patients, VTE incidence did not statistically differ from that in noncirrhotic patients. 1. Background Chronic liver disease leads to decreased synthesis of coagulation proteins, such as factors II, VII, IX, and X, and is frequently associated with thrombocytopenia [1–3]. Whether these abnormalities make cirrhotic patients less prone to venous thromboembolism (VTE) than the general population is unclear, especially given that cirrhosis is also associated with decreased production of anticoagulation factors, such as protein C, protein S, and antithrombin III [2, 3]. A population-based, case-control study found that liver disease was associated with reduced VTE risk (odds ratio (OR), 0.1; 95% CI, 0.0–0.7) [4]. One retrospective case-control study in hospitalized cirrhotic patients found that VTE occurred in only 0.5% of patients [5], a rate that was lower than that reported in general medical patients [5]. However, more recent studies found higher VTE rates in hospitalized cirrhotic patients (2.7–6.3%) [6, 7]. Additionally, a study of 963 cirrhotic patients and 12,405 controls admitted to a tertiary care hospital found that cirrhotics had higher (1.8%) VTE incidence than controls in general
Permissive underfeeding versus target enteral feeding in adult critically ill patients (PermiT Trial): a study protocol of a multicenter randomized controlled trial
Arabi Yaseen M,Haddad Samir H,Aldawood Abdulaziz S,Al-Dorzi Hasan M
Trials , 2012, DOI: 10.1186/1745-6215-13-191
Abstract: Background Nutritional support is an essential part of the management of critically ill patients. However, optimal caloric intake has not been systematically evaluated. We aim to compare two strategies of enteral feeding: permissive underfeeding versus target feeding. Method/Design This is an international multi-center randomized controlled trial in critically ill medical- surgical adult patients. Using a centralized allocation, 862 patients will be randomized to permissive underfeeding or target feeding. Patients in the permissive group receive 50% (acceptable range is 40% to 60%) of the calculated caloric requirement, while those in the targeted group receive 100% (acceptable range 70% to 100%) of the calculated caloric requirement. The primary outcome is 90-day all-cause mortality. Secondary outcomes include ICU and hospital mortality, 28-day, and 180-day mortality as well as health care-associated infections, organ failure, and length of stay in the ICU and hospital. The trial has 80% power to detect an 8% absolute reduction in 90-day mortality assuming a baseline risk of death of 25% at an alpha level of 0.05. Discussion Patient recruitment started in November 2009 and is currently active in five centers. The Data Monitoring Committee advised continuation of the trial after the first interim analysis. The study is expected to finish by November 2013. Trial registration Current Controlled Trials ISRCTN68144998
Bench-to-bedside review: Early tracheostomy in critically ill trauma patients
Nehad Shirawi, Yaseen Arabi
Critical Care , 2005, DOI: 10.1186/cc3828
Abstract: Trauma is currently one of the most important causes of morbidity and mortality in the age group between 15 to 35 years [1]. About 500,000 people are hospitalized yearly in the United States as a result of motor vehicular accident-related injuries [1]. In addition, motor vehicle-related deaths and injuries cost the United States more than $150 billion each year [1]. According to World Health Organization statistics for the year 2000, over 50% of global mortality due to road traffic accidents occurs among young adults and the mortality rates per 100,000 is in the range of 18.7 to 34.1 in the Eastern Mediterranean region and between 11.2 and 16.1 in Europe [2]. Many trauma patients require intubation and mechanical ventilation for several reasons, including relief of upper airway obstruction secondary to severe facial or laryngeal trauma, airway access in patients with cervical spine injury, management of retained airway secretions, maintenance of patent airway and airway access for prolonged mechanical ventilation [3]. The percentage of trauma patients who require tracheostomy varies considerably and ranges from 14% to 48% [4-6].Traditionally, tracheostomy has been provided for trauma patients who required endotracheal intubation for a prolonged period of time. In 1989, the American College of Chest Physicians' Consensus Conference on Artificial Airways in Patients Receiving Mechanical Ventilation recommended that tracheostomy should be considered in patients anticipated to require endotracheal intubation for more than 21 days [7]. It also recommended, however, that if tracheostomy is indicated, it should be done early to minimize the duration of translaryngeal intubation and lower the incidence of associated complications. Recently, there has been an increasing trend towards converting endotracheal intubation to tracheostomy at an earlier stage as more evidence supports the benefits of early tracheostomy [5,8-10]. Whited [11] conducted a prospective study involving
Impact of computerized physician order entry (CPOE) system on the outcome of critically ill adult patients: a before-after study
Hasan M Al-Dorzi, Hani M Tamim, Antoine Cherfan, Mohamad A Hassan, Saadi Taher, Yaseen M Arabi
BMC Medical Informatics and Decision Making , 2011, DOI: 10.1186/1472-6947-11-71
Abstract: This was an observational before-after study carried out in a 21-bed medical and surgical intensive care unit (ICU) of a tertiary care center. It included all patients admitted to the ICU in the 24 months pre- and 12 months post-CPOE (Misys?) implementation. Data were extracted from a prospectively collected ICU database and included: demographics, Acute Physiology and Chronic Health Evaluation (APACHE) II score, admission diagnosis and comorbid conditions. Outcomes compared in different pre- and post-CPOE periods included: ICU and hospital mortality, duration of mechanical ventilation, and ICU and hospital length of stay. These outcomes were also compared in selected high risk subgroups of patients (age 12-17 years, traumatic brain injury, admission diagnosis of sepsis and admission APACHE II > 23). Multivariate analysis was used to adjust for imbalances in baseline characteristics and selected clinically relevant variables.There were 1638 and 898 patients admitted to the ICU in the specified pre- and post-CPOE periods, respectively (age = 52 ± 22 vs. 52 ± 21 years, p = 0.74; APACHE II = 24 ± 9 vs. 24 ± 10, p = 0.83). During these periods, there were no differences in ICU (adjusted odds ratio (aOR) 0.98, 95% confidence interval [CI] 0.7-1.3) and in hospital mortality (aOR 1.00, 95% CI 0.8-1.3). CPOE implementation was associated with similar duration of mechanical ventilation and of stay in the ICU and hospital. There was no increased mortality or stay in the high risk subgroups after CPOE implementation.The implementation of CPOE in an adult medical surgical ICU resulted in no improvement in patient outcomes in the immediate phase and up to 12 months after implementation.Computerized Physician Order Entry (CPOE) is the process of entering medication orders and other physician's instructions electronically using a computer-based system to ensure standardized, legible and complete orders [1]. Its implementation has been recommended to improve patient safety and outc
sRAGE in diabetic and non-diabetic critically ill patients: effects of intensive insulin therapy
Yaseen M Arabi, Mohammed Dehbi, Asgar H Rishu, Engin Baturcam, Salim H Kahoul, Riette J Brits, Brintha Naidu, Abderrezak Bouchama
Critical Care , 2011, DOI: 10.1186/cc10420
Abstract: A predesigned analysis was conducted of prospectively collected samples from 76 hyperglycemic critically ill patients (33 type-2 diabetes, 43 non-diabetes) aged ≥18 years with blood glucose of > 6.1 mmol/L enrolled in a randomized controlled trial comparing intensive insulin therapy with conventional insulin therapy. sRAGE and its ligand HMGB-1 together with IL-6, and soluble thrombomodulin (as markers of inflammation and endothelial cell injury, respectively) were evaluated in ICU, at Days 1, 3, 5 and 7. Plasma samples from 18 healthy subjects were used as controls.Both diabetic and non-diabetic hyperglycemic patients showed increased plasma sRAGE, HMGB-1 and soluble thrombomodulin levels at the time of admission to ICU. Plasma IL-6 concentration was only increased in non-diabetic patients. Plasma levels of sRAGE were higher in diabetic compared with non-diabetic patients. Intensive insulin therapy resulted in a significant decrease of sRAGE and thrombomodulin at Day 7, in diabetic but not in non-diabetic patients. Circulating sRAGE levels correlated positively with IL-6 and soluble thrombomodulin levels and inversely with HMGB-1. Multivariate regression analysis demonstrated that sRAGE remains independently correlated with HMGB-1 only in diabetic patients. Neither sRAGE nor any inflammatory markers are associated with mortality.These findings support the hypothesis that sRAGE release, time-course and response to intensive insulin therapy differ between hyperglycemic diabetic and non-diabetic critically ill patients. Whether this difference underlies the dissimilarity in clinical outcome of hyperglycemia in these two conditions warrants further studies.Hyperglycemia represents an important independent risk factor for morbidity and mortality in critically ill patients admitted to ICU [1,2]. Accordingly, the benefit of strict control of blood sugar with intensive insulin therapy (IIT) versus conventional insulin therapy (CIT) has been greatly debated with some studie
A review of large animal vehicle accidents with special focus on Arabian camels
Abdullah Al Shimemeri,Yaseen Arabi
Journal of Emergency Medicine, Trauma and Acute Care , 2012, DOI: 10.5339/jemtac.2012.21
Abstract: Traffic accidents resulting from the collision of motor vehicles with wildlife occur worldwide. In the United States, Canada, Europe, the Middle East and Australia these collisions usually involve deer, moose, camels and kangaroos. Because these are large animals, the collisions are frequently associated with high morbidity and mortality rates. Camel-vehicle collisions in the Middle East—especially Saudi Arabia—have risen to such disturbing proportions that definitive action is necessary for mitigating the trend. Arabian camels, weighing up to 726 kg, form a crucial part of the socio-cultural experience in Saudi Arabia, where about half a million of them are found. Saudi Arabia presents a case of habitat fragmentation, especially in rural communities, where good road systems coexist with domesticated camels. This environment has made camel-vehicle collisions inevitable, and in 2004 alone two hundred such cases were reported. Injuries are directly related to the size of the camel, the speed of the vehicle, passengers' use or avoidance of seat belts, and the protective reflex movements taken to avoid collision. Cervical and dorsal spinal injuries, especially fractured discs, head and chest injuries, are the most commonly reported injuries, and the fatality rate is four times higher than for other causes of traffic accidents. Various mitigation measures are considered in the present work, including measures to improve driver's visibility; the construction of highway fencing; under- and over-passes allowing free movement of camels; the use of reflective warning signs, and awareness programs.
Page 1 /401361
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.