Abstract:
We calculate the axial current decay constants of taste non-Goldstone pions and kaons in staggered chiral perturbation theory through next-to-leading order. The results are a simple generalization of the results for the taste Goldstone case. New low-energy couplings are limited to analytic corrections that vanish in the continuum limit; certain coefficients of the chiral logarithms are modified, but they contain no new couplings. We report results for quenched, fully dynamical, and partially quenched cases of interest in the chiral SU(3) and SU(2) theories.

Abstract:
We calculate the next-to-leading order axial current decay constants of taste non-Goldstone pions and kaons in staggered chiral perturbation theory. This is an extension of the taste Goldstone decay constants calculation to that of the non-Goldstone tastes. We present results for the partially quenched case in the SU(3) and SU(2) staggered chiral perturbation theories and discuss the difference between the taste Goldstone and non-Goldstone cases.

Abstract:
We present preliminary results of data analysis for the non-perturbative renormalization (NPR) on the self-energy of the quark propagators calculated using HYP improved staggered fermions on the MILC asqtad lattices. We use the momentum source to generate the quark propagators. In principle, using the vector projection operator of $(\bar{\bar{\gamma_\mu \otimes 1}})$ and the scalar projection operator $(\bar{\bar{1 \otimes 1}})$, we should be able to obtain the wave function renormalization factor $Z_q'$ and the mass renormalization factor $Z_q \cdot Z_m$. Using the MILC coarse lattice, we obtain a preliminary but reasonable estimate of $Z_q'$ and $Z_q \cdot Z_m$ from the data analysis on the self-energy.

Abstract:
We present a review on recent progress in staggered chiral perturbation theory (SChPT). In the last decade, the scope of the application of SChPT has been extended beyond the level of calibration into the region of prediction with high precision. SChPT becomes an essential tool to do the data analysis reliably for physical observables calculated using improved staggered fermions. Here, we focus on the following examples: pion spectrum, pion decay constants, $\varepsilon_K$, and $\pi-\pi$ scattering amplitudes. In each subject, we review the recent progress and future prospects.

Abstract:
We present renormalization factors for the bilinear operators obtained using the non-perturbative renormalization method (NPR) in the RI-MOM scheme with improved staggered fermions on the MILC asqtad lattices ($N_f = 2+1$). We use the MILC coarse ensembles with $20^3 \times 64$ geometry and $am_{\ell}/am_s = 0.01/0.05$. We obtain the wave function renormalization factor $Z_q$ from the conserved vector current and the mass renormalization factor $Z_m$ from the scalar bilinear operator. We also present preliminary results of renormalization factors for other bilinear operators.

Abstract:
We report a possible solution to the trouble that the covariance fitting fails when the data is highly correlated and the covariance matrix has small eigenvalues. As an example, we choose the data analysis of highly correlated $B_K$ data on the basis of the SU(2) staggered chiral perturbation theory. Basically, the essence of the problem is that we do not have an accurate fitting function so that we cannot fit the highly correlated and precise data. When some eigenvalues of the covariance matrix are small, even a tiny error of fitting function can produce large chi-square and spoil the fitting procedure. We have applied a number of prescriptions available in the market such as diagonal approximation and cutoff method. In addition, we present a new method, the eigenmode shift method which fine-tunes the fitting function while keeping the covariance matrix untouched.

Abstract:
We present a review on recent progress in staggered chiral perturbation theory (SChPT). In the last decade, the scope of the application of SChPT has been extended beyond the level of calibration into the region of prediction with high precision. SChPT becomes an essential tool to do the data analysis reliably for physical observables calculated using improved staggered fermions. Here, we focus on the following examples: pion spectrum, pion decay constants, $\varepsilon_K$, and $\pi-\pi$ scattering amplitudes. In each subject, we review the recent progress and future prospects.

Abstract:
We address a frequently asked question on the covariance fitting of the highly correlated data such as our $B_K$ data based on the SU(2) staggered chiral perturbation theory. Basically, the essence of the problem is that we do not have an accurate fitting function enough to fit extremely precise data. When eigenvalues of the covariance matrix are small, even a tiny error of fitting function yields large chi-square and spoils the fitting procedure. We have applied a number of prescriptions available in the market such as the cut-off method, modified covariance matrix method, and Bayesian method. We also propose a brand new method, the eigenmode shift method which allows a full covariance fitting without modifying the covariance matrix at all. In our case, the eigenmode shift (ES) method and Bayesian method turn out to be the best prescription to the problem. We also provide a pedagogical example of data analysis in which the diagonal approximation and the cut-off method fail in fitting manifestly, but the ES method and the Bayesian approach work well.

Abstract:
Lattice QCD calculations with different staggered valence and sea quarks can be used to improve determinations of quark masses, Gasser-Leutwyler couplings, and other parameters relevant to phenomenology. We calculate the masses and decay constants of flavored pions and kaons through next-to-leading order in staggered-valence, staggered-sea mixed-action chiral perturbation theory. We present the results in the valence-valence and valence-sea sectors, for all tastes. As in unmixed theories, the taste-pseudoscalar, valence-valence mesons are exact Goldstone bosons in the chiral limit, at non-zero lattice spacing. The results reduce correctly when the valence and sea quark actions are identical, connect smoothly to the continuum limit, and provide a way to control light quark and gluon discretization errors in lattice calculations performed with different staggered actions for the valence and sea quarks.

Abstract:
Different versions of improved staggered fermions can be used as valence quarks to reduce discretization effects in lattice QCD calculations while increasing statistics on existing staggered gauge ensembles. Such mixed-action simulations can be used to improve determinations of light quark masses, Gasser-Leutwyler couplings, decay constants, and other parameters relevant to particle phenomenology. We recall the generalization of ordinary, unmixed staggered chiral perturbation theory required to describe data from lattice calculations with a mixed action such as with HYP staggered valence quarks and asqtad sea quarks. We calculate the next-to-leading order loop diagrams contributing to the masses and decay constants of the flavored pseudo-Goldstone bosons of all tastes and here report results for the decay constants and valence-valence masses.