Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 1 )

2019 ( 24 )

2018 ( 28 )

2017 ( 25 )

Custom range...

Search Results: 1 - 10 of 7641 matches for " Vincent Torre "
All listed articles are free for downloading (OA Articles)
Page 1 /7641
Display every page Item
A Component of Retinal Light Adaptation Mediated by the Thyroid Hormone Cascade
Diana E. Bedolla, Vincent Torre
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0026334
Abstract: Analysis with DNA-microrrays and real time PCR show that several genes involved in the thyroid hormone cascade, such as deiodinase 2 and 3 (Dio2 and Dio3) are differentially regulated by the circadian clock and by changes of the ambient light. The expression level of Dio2 in adult rats (2–3 months of age) kept continuously in darkness is modulated by the circadian clock and is up-regulated by 2 fold at midday. When the diurnal ambient light was on, the expression level of Dio2 increased by 4–8 fold and a consequent increase of the related protein was detected around the nuclei of retinal photoreceptors and of neurons in inner and outer nuclear layers. The expression level of Dio3 had a different temporal pattern and was down-regulated by diurnal light. Our results suggest that DIO2 and DIO3 have a role not only in the developing retina but also in the adult retina and are powerfully regulated by light. As the thyroid hormone is a ligand-inducible transcription factor controlling the expression of several target genes, the transcriptional activation of Dio2 could be a novel genomic component of light adaptation.
Early Phase of Plasticity-Related Gene Regulation and SRF Dependent Transcription in the Hippocampus
Giovanni Iacono, Claudio Altafini, Vincent Torre
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0068078
Abstract: Hippocampal organotypic cultures are a highly reliable in vitro model for studying neuroplasticity: in this paper, we analyze the early phase of the transcriptional response induced by a 20 μM gabazine treatment (GabT), a GABA-Ar antagonist, by using Affymetrix oligonucleotide microarray, RT-PCR based time-course and chromatin-immuno-precipitation. The transcriptome profiling revealed that the pool of genes up-regulated by GabT, besides being strongly related to the regulation of growth and synaptic transmission, is also endowed with neuro-protective and pro-survival properties. By using RT-PCR, we quantified a time-course of the transient expression for 33 of the highest up-regulated genes, with an average sampling rate of 10 minutes and covering the time interval [10:90] minutes. The cluster analysis of the time-course disclosed the existence of three different dynamical patterns, one of which proved, in a statistical analysis based on results from previous works, to be significantly related with SRF-dependent regulation (p-value<0.05). The chromatin immunoprecipitation (chip) assay confirmed the rich presence of working CArG boxes in the genes belonging to the latter dynamical pattern and therefore validated the statistical analysis. Furthermore, an in silico analysis of the promoters revealed the presence of additional conserved CArG boxes upstream of the genes Nr4a1 and Rgs2. The chip assay confirmed a significant SRF signal in the Nr4a1 CArG box but not in the Rgs2 CArG box.
Comparison of the Force Exerted by Hippocampal and DRG Growth Cones
Ladan Amin, Erika Ercolini, Jelena Ban, Vincent Torre
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0073025
Abstract: Mechanical properties such as force generation are fundamental for neuronal motility, development and regeneration. We used optical tweezers to compare the force exerted by growth cones (GCs) of neurons from the Peripheral Nervous System (PNS), such as Dorsal Root Ganglia (DRG) neurons, and from the Central Nervous System (CNS) such as hippocampal neurons. Developing GCs from dissociated DRG and hippocampal neurons were obtained from P1-P2 and P10-P12 rats. Comparing their morphology, we observed that the area of GCs of hippocampal neurons was 8-10 μm2 and did not vary between P1-P2 and P10-P12 rats, but GCs of DRG neurons were larger and their area increased from P1-P2 to P10-P12 by 2-4 times. The force exerted by DRG filopodia was in the order of 1-2 pN and never exceeded 5 pN, while hippocampal filopodia exerted a larger force, often in the order of 5 pN. Hippocampal and DRG lamellipodia exerted lateral forces up to 20 pN, but lamellipodia of DRG neurons could exert a vertical force larger than that of hippocampal neurons. Force-velocity relationships (Fv) in both types of neurons had the same qualitative behaviour, consistent with a common autocatalytic model of force generation. These results indicate that molecular mechanisms of force generation of GC from CNS and PNS neurons are similar but the amplitude of generated force is influenced by their cytoskeletal properties.
Spontaneous electrical activity and behavior in the leech Hirudo medicinalis
Elizabeth Garcia-Perez,Alberto Mazzoni,Vincent Torre
Frontiers in Integrative Neuroscience , 2007, DOI: 10.3389/neuro.07.008.2007
Abstract: In the absence of external stimuli, animals explore the environment by performing irregular movements, but the neuronal mechanisms underlying this arrhythmic motion are largely unknown. In this paper, we studied the relationship between the spontaneous neuronal activity in the leech (Hirudo medicinalis) and its behavior. We analyzed the electrical activity of isolated ganglia, chains of two connected ganglia, and semi-intact preparations. The spontaneous electrical activity in ganglia was characterized by the occurrence of irregular bursts of spikes with variable duration and size. Properties of these bursts were modified by synaptic inputs arriving from the neighboring ganglia and from the two primitive brains located in the head and tail. In fact, in semi-intact preparations, unusually large bursts of spikes occurring spontaneously were recorded and caused the leech to move even in the absence of any external sensory stimulation. These large bursts appear to act as internal triggers controlling the spontaneous leech behavior and determining the duration of stereotypical motor patterns.
Characterization of the time course of changes of the evoked electrical activity in a model of a chemically-induced neuronal plasticity
Frédéric D Broccard, Silvia Pegoraro, Maria Ruaro, Claudio Altafini, Vincent Torre
BMC Research Notes , 2009, DOI: 10.1186/1756-0500-2-13
Abstract: In the present manuscript we analysed the time course of changes of the evoked electrical activity during neuronal plasticity and we correlated it with a transcriptional analysis of the underlying changes of gene expression. Our investigation shows that treatment for 30 min. with the GABAA receptor antagonist gabazine (GabT) causes a potentiation of the evoked electrical activity occurring 2–4 hours after GabT and the concomitant up-regulation of 342 genes. Inhibition of the ERK1/2 pathway reduced but did not abolish the potentiation of the evoked response caused by GabT. In fact not all the genes analysed were blocked by ERK1/2 inhibitors.These results are in agreement with the notion that neuronal plasticity is mediated by several distinct pathways working in unison.We have used dissociated neuronal cultures grown over MEA for 2–6 weeks to monitor the electrical activity from a population of neurons [9]. MEAs allow stable and long lasting recordings (hours to days) of extracellular signals from the entire population and permit to characterize and follow the properties of single spikes from identified neurons. In this way, it was possible to describe the global properties of the network, such as its overall electrical activity and to obtain a characterization of changes during neuronal plasticity of single identified spikes. This analysis could not be performed with hippocampal slices or organotypic cultures grown on MEAs or in vivo, because in these cases local field potentials (LFPs) are observed and a detailed investigation of neuronal plasticity at a single spike level is almost impossible. We increased synaptic efficacy and the overall electrical activity by treating hippocampal cultures for 30 min. with the GABAA receptor antagonist gabazine (GabT). After GabT, gabazine was washed out and the time course of evoked electrical activity was followed/studied. MEA's extracellular electrodes were used for recording and stimulation so to quantify changes of the evok
Can Hippocampal Neurites and Growth Cones Climb over Obstacles?
Thuy Linh Lien, Jelena Ban, Massimo Tormen, Elisa Migliorini, Gianluca Grenci, Alessandro Pozzato, Vincent Torre
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0073966
Abstract: Guidance molecules, such as Sema3A or Netrin-1, can induce growth cone (GC) repulsion or attraction in the presence of a flat surface, but very little is known of the action of guidance molecules in the presence of obstacles. Therefore we combined chemical and mechanical cues by applying a steady Netrin-1 stream to the GCs of dissociated hippocampal neurons plated on polydimethylsiloxane (PDMS) surfaces patterned with lines 2 μm wide, with 4 μm period and with a height varying from 100 to 600 nm. GC turning experiments performed 24 hours after plating showed that filopodia crawl over these lines within minutes. These filopodia do not show staining for the adhesion marker Paxillin. GCs and neurites crawl over lines 100 nm high, but less frequently and on a longer time scale over lines higher than 300 nm; neurites never crawl over lines 600 nm high. When neurons are grown for 3 days over patterned surfaces, also neurites can cross lines 300 nm and 600 nm high, grow parallel to and on top of these lines and express Paxillin. Axons - selectively stained with SMI 312 – do not differ from dendrites in their ability to cross these lines. Our results show that highly motile structures such as filopodia climb over high obstacle in response to chemical cues, but larger neuronal structures are less prompt and require hours or days to climb similar obstacles.
The use of dendrograms to describe the electrical activity of motoneurons underlying behaviors in leeches
León J. Juárez-Hernández,Giacomo Bisson,Vincent Torre
Frontiers in Integrative Neuroscience , 2013, DOI: 10.3389/fnint.2013.00069
Abstract: The present manuscript aims at identifying patterns of electrical activity recorded from neurons of the leech nervous system, characterizing specific behaviors. When leeches are at rest, the electrical activity of neurons and motoneurons is poorly correlated. When leeches move their head and/or tail, in contrast, action potential (AP) firing becomes highly correlated. When the head or tail suckers detach, specific patterns of electrical activity are detected. During elongation and contraction the electrical activity of motoneurons in the Medial Anterior and Dorsal Posterior nerves increase, respectively, and several motoneurons are activated both during elongation and contraction. During crawling, swimming, and pseudo-swimming patterns of electrical activity are better described by the dendrograms of cross-correlations of motoneurons pairs. Dendrograms obtained from different animals exhibiting the same behavior are similar and by averaging these dendrograms we obtained a template underlying a given behavior. By using this template, the corresponding behavior is reliably identified from the recorded electrical activity. The analysis of dendrograms during different leech behavior reveals the fine orchestration of motoneurons firing specific to each stereotyped behavior. Therefore, dendrograms capture the subtle changes in the correlation pattern of neuronal networks when they become involved in different tasks or functions.
Properties of the Force Exerted by Filopodia and Lamellipodia and the Involvement of Cytoskeletal Components
Dan Cojoc, Francesco Difato, Enrico Ferrari, Rajesh B. Shahapure, Jummi Laishram, Massimo Righi, Enzo M. Di Fabrizio, Vincent Torre
PLOS ONE , 2007, DOI: 10.1371/journal.pone.0001072
Abstract: During neuronal differentiation, lamellipodia and filopodia explore the environment in search for the correct path to the axon's final destination. Although the motion of lamellipodia and filopodia has been characterized to an extent, little is known about the force they exert. In this study, we used optical tweezers to measure the force exerted by filopodia and lamellipodia with a millisecond temporal resolution. We found that a single filopodium exerts a force not exceeding 3 pN, whereas lamellipodia can exert a force up to 20 pN. Using metabolic inhibitors, we showed that no force is produced in the absence of actin polymerization and that development of forces larger than 3 pN requires microtubule polymerization. These results show that actin polymerization is necessary for force production and demonstrate that not only do neurons process information, but they also act on their environment exerting forces varying from tenths pN to tens of pN.
On the Dynamics of the Spontaneous Activity in Neuronal Networks
Alberto Mazzoni, Frédéric D. Broccard, Elizabeth Garcia-Perez, Paolo Bonifazi, Maria Elisabetta Ruaro, Vincent Torre
PLOS ONE , 2007, DOI: 10.1371/journal.pone.0000439
Abstract: Most neuronal networks, even in the absence of external stimuli, produce spontaneous bursts of spikes separated by periods of reduced activity. The origin and functional role of these neuronal events are still unclear. The present work shows that the spontaneous activity of two very different networks, intact leech ganglia and dissociated cultures of rat hippocampal neurons, share several features. Indeed, in both networks: i) the inter-spike intervals distribution of the spontaneous firing of single neurons is either regular or periodic or bursting, with the fraction of bursting neurons depending on the network activity; ii) bursts of spontaneous spikes have the same broad distributions of size and duration; iii) the degree of correlated activity increases with the bin width, and the power spectrum of the network firing rate has a 1/f behavior at low frequencies, indicating the existence of long-range temporal correlations; iv) the activity of excitatory synaptic pathways mediated by NMDA receptors is necessary for the onset of the long-range correlations and for the presence of large bursts; v) blockage of inhibitory synaptic pathways mediated by GABAA receptors causes instead an increase in the correlation among neurons and leads to a burst distribution composed only of very small and very large bursts. These results suggest that the spontaneous electrical activity in neuronal networks with different architectures and functions can have very similar properties and common dynamics.
Eigenvector Sensitivity: A Kharitonov Result  [PDF]
Vincent Winstead
American Journal of Computational Mathematics (AJCM) , 2013, DOI: 10.4236/ajcm.2013.32024

This study is motivated by a need to effectively determine the difference between a system fault and normal system operation under parametric uncertainty using eigenstructure analysis. This involves computational robustness of eigenvectors in linear state space systems dependent upon uncertain parameters. The work involves the development of practical algorithms which provide for computable robustness measures on the achievable set of eigenvectors associated with certain state space matrix constructions. To make connections to a class of systems for which eigenvalue and characteristic root robustness are well understood, the work begins by focusing on companion form matrices associated with a polynomial whose coefficients lie in specified intervals. The work uses an extension of the well known theories of Kharitonov that provides computational efficient tests for containment of the roots of the polynomial (and eigenvalues of the companion matrices) in desirable regions, such as the left half of the complex plane.

Page 1 /7641
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.