oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 48 )

2019 ( 267 )

2018 ( 307 )

2017 ( 306 )

Custom range...

Search Results: 1 - 10 of 228520 matches for " Simon C. Watkins "
All listed articles are free for downloading (OA Articles)
Page 1 /228520
Display every page Item
HIV-1 Infection of DC: Evidence for the Acquisition of Virus Particles from Infected T Cells by Antigen Uptake Mechanism
Narasimhan J. Venkatachari,Sean Alber,Simon C. Watkins,Velpandi Ayyavoo
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0007470
Abstract: Dendritic cells (DC) play a pivotal role in transmission and dissemination of HIV-1. Earlier studies reported that DC present at the site of infection trap virus particles via DC-SIGN and transfer the virus to the interacting na?ve T cells. This prompted us to ask the question whether DC could acquire virus from infected T cells during DC-T cell interaction. To address this, we investigated the likely transfer of virus from HIV-1 infected T cells to DC and the underlying mechanisms involved. Results indicate that DC acquire virus from infected T cells via antigen uptake mechanism and this results in infection of DC with expression of proteins directed by viral DNA. Further studies with HIV-1 lacking the Env protein also resulted in infection of DC. The use of antibodies against DC-SIGN and DC-SIGN-R ruled out a role for receptor in the infection of DC. Additional data show that DC infection is directly correlated with the ability of DC to take up antigen from infected T cells. Overall, these studies provide evidence to suggest that HIV-1, besides infecting immune cells, also utilizes immunological mechanism(s) to acquire and disseminate virus.
An Unexpected Role for the Clock Protein Timeless in Developmental Apoptosis
Linda P. O'Reilly,Simon C. Watkins,Thomas E. Smithgall
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0017157
Abstract: Programmed cell death is critical not only in adult tissue homeostasis but for embryogenesis as well. One of the earliest steps in development, formation of the proamniotic cavity, involves coordinated apoptosis of embryonic cells. Recent work from our group demonstrated that c-Src protein-tyrosine kinase activity triggers differentiation of mouse embryonic stem (mES) cells to primitive ectoderm-like cells. In this report, we identified Timeless (Tim), the mammalian ortholog of a Drosophila circadian rhythm protein, as a binding partner and substrate for c-Src and probed its role in the differentiation of mES cells.
Generation of FGF reporter transgenic zebrafish and their utility in chemical screens
Gabriela A Molina, Simon C Watkins, Michael Tsang
BMC Developmental Biology , 2007, DOI: 10.1186/1471-213x-7-62
Abstract: Expression of Dual Specificity Phosphatase 6 (dusp6, also known as Mkp3) is controlled by FGF signalling throughout development. The Dusp6 promoter was isolated from zebrafish and used to drive expression of destabilized green fluorescent protein (d2EGFP) in transgenic embryos (Tg(Dusp6:d2EGFP)). Expression of d2EGFP is initiated as early as 4 hours post-fertilization (hpf) within the future dorsal region of the embryo, where fgf3 and fgf8 are initially expressed. At later stages, d2EGFP is detected within structures that correlate with the expression of Fgf ligands and their receptors. This includes the mid-hindbrain boundary (MHB), pharyngeal endoderm, otic vesicle, hindbrain, and Kupffer's vesicle. The expression of d2EGFP is under the control of FGF signalling as treatment with FGF Receptor (FGFR) inhibitors results in the suppression of d2EGFP expression. In a pilot screen of commercially available small molecules we have evaluated the effectiveness of the transgenic lines to identify specific FGF inhibitors within the class of indolinones. These compounds were counter screened with the transgenic line Tg(Fli1:EGFP)y1, that serves as an indirect read-out for Vascular Endothelial Growth Factor (VEGF) signalling in order to determine the specificity between related receptor tyrosine kinases (RTKs). From these assays it is possible to determine the specificity of these indolinones towards specific RTK signalling pathways. This has enabled the identification of compounds that can block specifically the VEGFR or the FGFR signalling pathway.The generation of transgenic reporter zebrafish lines has allowed direct visualization of FGF signalling within the developing embryo. These FGF reporter transgenic lines provide a tool to screen for specific compounds that can distinguish between two conserved members of the RTK family.The complex process of embryogenesis is directed by the regulation of signalling pathways that are achieved in part by the activity of a variety o
Dynamin- and Rab5-Dependent Endocytosis of a Ca2+-Activated K+ Channel, KCa2.3
Yajuan Gao, Claudia A. Bertuccio, Corina M. Balut, Simon C. Watkins, Daniel C. Devor
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0044150
Abstract: Regulation of the number of ion channels at the plasma membrane is a critical component of the physiological response. We recently demonstrated that the Ca2+-activated K+ channel, KCa2.3 is rapidly endocytosed and enters a Rab35- and EPI64C-dependent recycling compartment. Herein, we addressed the early endocytic steps of KCa2.3 using a combination of fluorescence and biotinylation techniques. We demonstrate that KCa2.3 is localized to caveolin-rich domains of the plasma membrane using fluorescence co-localization, transmission electron microscopy and co-immunoprecipitation (co-IP). Further, in cells lacking caveolin-1, we observed an accumulation of KCa2.3 at the plasma membrane as well as a decreased rate of endocytosis, as assessed by biotinylation. We also demonstrate that KCa2.3 and dynamin II are co-localized following endocytosis as well as demonstrating they are associated by co-IP. Further, expression of K44A dynamin II resulted in a 2-fold increase in plasma membrane KCa2.3 as well as a 3-fold inhibition of endocytosis. Finally, we evaluated the role of Rab5 in the endocytosis of KCa2.3. We demonstrate that expression of a dominant active Rab5 (Q79L) results in the accumulation of newly endocytosed KCa2.3 on to the membrane of the Rab5-induced vacuoles. We confirmed this co-localization by co-IP; demonstrating that KCa2.3 and Rab5 are associated. As expected, if Rab5 is required for the endocytosis of KCa2.3, expression of a dominant negative Rab5 (S34N) resulted in an approximate 2-fold accumulation of KCa2.3 at the plasma membrane. This was confirmed by siRNA-mediated knockdown of Rab5. Expression of the dominant negative Rab5 also resulted in a decreased rate of KCa2.3 endocytosis. These results demonstrate that KCa2.3 is localized to a caveolin-rich domain within the plasma membrane and is endocytosed in a dynamin- and Rab5-dependent manner prior to entering the Rab35/EPI64C recycling compartment and returning to the plasma membrane.
High Resolution Imaging of Vascular Function in Zebrafish
Simon C. Watkins, Salony Maniar, Mackenzie Mosher, Beth L. Roman, Michael Tsang, Claudette M. St Croix
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0044018
Abstract: Rationale The role of the endothelium in the pathogenesis of cardiovascular disease is an emerging field of study, necessitating the development of appropriate model systems and methodologies to investigate the multifaceted nature of endothelial dysfunction including disturbed barrier function and impaired vascular reactivity. Objective We aimed to develop and test an optimized high-speed imaging platform to obtain quantitative real-time measures of blood flow, vessel diameter and endothelial barrier function in order to assess vascular function in live vertebrate models. Methods and Results We used a combination of cutting-edge optical imaging techniques, including high-speed, camera-based imaging (up to 1000 frames/second), and 3D confocal methods to collect real time metrics of vascular performance and assess the dynamic response to the thromboxane A2 (TXA2) analogue, U-46619 (1 μM), in transgenic zebrafish larvae. Data obtained in 3 and 5 day post-fertilization larvae show that these methods are capable of imaging blood flow in a large (1 mm) segment of the vessel of interest over many cardiac cycles, with sufficient speed and sensitivity such that the trajectories of individual erythrocytes can be resolved in real time. Further, we are able to map changes in the three dimensional sizes of vessels and assess barrier function by visualizing the continuity of the endothelial layer combined with measurements of extravasation of fluorescent microspheres. Conclusions We propose that this system-based microscopic approach can be used to combine measures of physiologic function with molecular behavior in zebrafish models of human vascular disease.
Identification of a Cardiac Specific Protein Transduction Domain by In Vivo Biopanning Using a M13 Phage Peptide Display Library in Mice
Maliha Zahid,Brett E. Phillips,Sean M. Albers,Nick Giannoukakis,Simon C. Watkins,Paul D. Robbins
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0012252
Abstract: A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library.
Stratification of Antigen-presenting Cells within the Normal Cornea
Jared E. Knickelbein, Simon C. Watkins, Paul G. McMenamin and Robert L. Hendricks
Ophthalmology and Eye Diseases , 2012,
Abstract: The composition and location of professional antigen presenting cells (APC) varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP) from the CD11c promoter (pCD11c) in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs) reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 μm in length and traverse up 20 μm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.
Stratification of Antigen-presenting Cells within the Normal Cornea
Jared E. Knickelbein,Simon C. Watkins,Paul G. McMenamin,Robert L. Hendricks
Ophthalmology and Eye Diseases , 2009,
Abstract: The composition and location of professional antigen presenting cells (APC) varies in different mucosal surfaces. The cornea, long considered an immune-privileged tissue devoid of APCs, is now known to host a heterogeneous network of bone marrow-derived cells. Here, we utilized transgenic mice that express enhanced green fluorescent protein (EGFP) from the CD11c promoter (pCD11c) in conjunction with immunohistochemical staining to demonstrate an interesting stratification of APCs within non-inflamed murine corneas. pCD11c+ dendritic cells (DCs) reside in the basal epithelium, seemingly embedded in the basement membrane. Most DCs express MHC class II on at least some dendrites, which extend up to 50 μm in length and traverse up 20 μm tangentially towards the apical surface of the epithelium. The DC density diminishes from peripheral to central cornea. Beneath the DCs and adjacent to the stromal side of the basement membrane reside pCD11c-CD11b+ putative macrophages that express low levels of MHC class II. Finally, MHC class IIpCD11c-CD11b+ cells form a network throughout the remainder of the stroma. This highly reproducible stratification of bone marrow-derived cells is suggestive of a progression from an APC function at the exposed corneal surface to an innate immune barrier function deeper in the stroma.
Gene Combination Transfer to Block Autoimmune Damage in Transplanted Islets of Langerhans
Suzanne Bertera,Angela M. Alexander,Megan L. Crawford,Glenn Papworth,Simon C. Watkins,Paul D. Robbins,Massimo Trucco
Experimental Diabetes Research , 2004, DOI: 10.1080/15438600490486822
Abstract: Islet transplantation therapy would be applicable to a wider range of diabetic patients if donor islet acceptance and protection were possible without systemic immunosuppression of the recipient. To this aim, gene transfer to isolated donor islets ex vivo is one method that has shown promise. This study examines the combined effect of selected immunomodulatory and anti-inflammatory genes known to extend the functional viability of pancreatic islet grafts in an autoimmune system. These genes, indoleamine 2,3-dioxygenase (IDO), manganese superoxide dismutase (MnSOD), and interleukin (IL)-1 receptor antagonist protein (IRAP), were transferred to isolated NOD donor islets ex vivo then transplanted to NODscid recipients and evaluated in vivo after diabetogenic T-cell challenge. The length of time the recipient remained euglycemic was used to measure the ability of the transgenes to protect the graft from autoimmune destruction. Although the results of these cotransfections gave little evidence of a synergistic relationship, they were useful to show that gene combinations can be used to more efficiently protect islet grafts from diabetogenic T cells.
Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection
Muhamuda Kader,Amanda P. Smith,Cristiana Guiducci,Elizabeth R. Wonderlich,Daniel Normolle,Simon C. Watkins,Franck J. Barrat,Simon M. Barratt-Boyes
PLOS Pathogens , 2013, DOI: 10.1371/journal.ppat.1003530
Abstract: Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology.
Page 1 /228520
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.