oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Search Results: 1 - 10 of 259 matches for " Shinichiro Yanase "
All listed articles are free for downloading (OA Articles)
Page 1 /259
Display every page Item
Combined Effects of Centrifugal and Coriolis Instability of the Flow through a Rotating Curved Duct with Rectangular Cross Section  [PDF]
Rabindra Nath Mondal, Samir Chandra Ray, Shinichiro Yanase
Open Journal of Fluid Dynamics (OJFD) , 2014, DOI: 10.4236/ojfd.2014.41001
Abstract: Combined effects of centrifugal and coriolis instability of the flow through a rotating curved duct with rectangular cross section have been studied numerically by using a spectral method, and covering a wide range of the Taylor number  for a constant Dean number. The rotation of the duct about the center of curvature is imposed in the positive direction, and the effects of rotation (Coriolis force) on the flow characteristics are investigated. As a result, multiple branches of asymmetric steady solutions with two-, three-and multi-vortex solutions are obtained. To investigate the non-linear behavior of the unsteady solutions, time evolution calculations as well as power spectrum of the unsteady solutions are performed, and it is found that the unsteady flow undergoes through various flow instabilities in the scenario “chaotic → multi-periodic → periodic → steady-state”, if Tr is increased in the positive direction. The present results show the characteristics of both the secondary flow and axial flow distribution in the flow.
Application of the Modified Force-Coupling Method of Tracing the Trajectories of Spherical Bubbles with Solid-Like and Slip Surfaces  [PDF]
Chao Guan, Shinichiro Yanase, Koji Matsuura, Toshinori Kouchi, Yasunori Nagata
Open Journal of Fluid Dynamics (OJFD) , 2017, DOI: 10.4236/ojfd.2017.74043
Abstract:
The force-coupling method (FCM) developed by Maxey and Patel (2001) was modified and applied to trace the trajectories of spherical bubbles with solid-like and slip surfaces. Careful comparison was made to the experimental results of Takemura et al. (2000, 2002a, 2002b). First, the result obtained by use of the original version of the FCM was compared to the experimental results. It was found that the original FCM was not feasible for tracing spherical bubble trajectories. Then, a correction was made to the FCM calculation of the bubble velocity by renormalization in terms of the bubble Reynolds number, which could very well trace the trajectory of the bubble with a solid-like, no-slip surface, but not that of a bubble with a slip surface. Finally, a substantial correction was made to the monopole term of the FCM, which could trace the trajectory of a bubble with a solid-like or slip surface very well even for the Reynolds number up to 20.
A Micromixer Using the Chaos of Secondary Flow: Rotation Effect of Channel on the Chaos of Secondary Flow  [PDF]
Yasutaka Hayamizu, Shinichiro Yanase, Shinichi Morita, Shigeru Ohtsuka, Takeshi Gonda, Kazunori Nishida, Kyoji Yamamoto
Open Journal of Fluid Dynamics (OJFD) , 2012, DOI: 10.4236/ojfd.2012.24A021
Abstract: The micromixer, which has a rotor with a curved channel, is studied experimentally. The secondary flow in a curved channel of rectangular cross-section is investigated using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) methods. Two walls of the channel (the inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction of the exit of the channel. The non-dimensional channel curvature δ=a/R is taken to be about 0.1, where 2a is the width of the channel, R the curvature radius of the channel. Other non-dimensional parameters concerned are the Dean number De=Reδ1/2, the Reynolds number Re=qdh/v, where q is the mean flow velocity in the channel axis direction, ν the kinematic viscosity, dh the hydraulic diameter of the channel, and the Taylor number Tr=2(2δ)1/2Ωa2/(δv), where Ω is the angular velocity of the rotor. Photographs of the flow in a cross-section at 180° downstream from the curved channel entrance are taken by changing the flux (De) at a constant rotational speed (Tr) of the channel walls. It is found that good mixing performance is obtained in the case of De≤0.1|Tr| and for that case secondary flows show chaotic behaviors. And then we have confirmed the occurrence of reversal of the mean axial flow.
Behavior of Motile Sperm in Taylor-Couette Flow: Effect of Shear Stress on the Behavior of Motile Sperm  [PDF]
Yasutaka Hayamizu, Toru Hyakutake, Koji Matsuura, Shinichiro Yanase, Shinichi Morita, Shigeru Ohtsuka, Takeshi Gonda
Open Journal of Fluid Dynamics (OJFD) , 2013, DOI: 10.4236/ojfd.2013.32A002
Abstract:

Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore important for infertility treatment. Therefore, as a new sorting method, microfluidic sperm sorter using the microfluidic system has been developed. To improve more separation efficiency of this device, it is necessary to know the behaviors of motile sperm in the microchannel where the sperm undergo shear flow. The previous study implied the necessity of the modeling of motile sperm in the shear flow. In the present study, therefore, we experimentally investigated the behavior of the motile sperm in the Taylor-Couette flow using PTV (Particle Tracking Velocimetry) method. The experimental results showed that the ascent of the shear stress led to the increase in the sperm velocity, and the direction of the sperm velocity was opposite to that of the flow.

A Micromixer Using the Taylor-Dean Flow: Effect of Inflow Conditions on the Mixing  [PDF]
Toshihiko Kawabe, Yasutaka Hayamizu, Shinichiro Yanase, Takeshi Gonda, Shinichi Morita, Shigeru Ohtsuka, Kyoji Yamamoto
Open Journal of Fluid Dynamics (OJFD) , 2014, DOI: 10.4236/ojfd.2014.45037
Abstract: Chaotic mixing in a curved-square channel flow is studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient is imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flows. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In the present paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental and numerical results. We produced a micromixer model of the curved channel several centimeters long with square cross section of a few millimeters side. The secondary flow was measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. We also performed three-dimensional numerical simulations for the exactly same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is achieved for the case of De ≤ 0.1Tr, and that mixing efficiency changes according to the difference in inflow conditions. The flow is studied both experimentally and numerically, and both results agree with each other very well.
A Micromixer Using the Taylor-Dean Flow: Effects of Aspect Ratio and Inflow Condition on the Mixing  [PDF]
Yasutaka Hayamizu, Toshihiko Kawabe, Shinichiro Yanase, Takeshi Gonda, Shinichi Morita, Shigeru Ohtsuka, Kyoji Yamamoto
Open Journal of Fluid Dynamics (OJFD) , 2015, DOI: 10.4236/ojfd.2015.53027
Abstract: Chaotic mixing in three different types of curved-rectangular channels flow has been studied experimentally and numerically. Two walls of the channel (inner and top walls) rotate around the center of curvature and a pressure gradient are imposed in the direction toward the exit of the channel. This flow is a kind of Taylor-Dean flow. There are two parameters dominating the flow, the Dean number De (∝ the pressure gradient or the Reynolds number) and the Taylor number Tr (∝ the angular velocity of the wall rotation). In this paper, we analyze the physical mechanism of chaotic mixing in the Taylor-Dean flow by comparing experimental results and numerical ones. We produced three micromixer models of the curved channel, several centimeters long, with rectangular cross-section of a few millimeters side. The secondary flow is measured using laser induced fluorescence (LIF) method to examine secondary flow characteristics. Also we performed three-dimensional numerical simulations with the open source CFD solver, OpenFOAM, for the same configuration as the experimental system to study the mechanism of chaotic mixing. It is found that good mixing performance is obtained in the case of De ≤ 0.1 Tr, and it becomes more remarkable when the aspect ratio tends to large. And it is found that the mixing efficiency changes according to the aspect ratio and inflow condition.
A viscous solution of the spherical vortex to the Navier-Stokes equations
Minoru Fujimoto,Kunihiko Uehara,Shinichiro Yanase
Physics , 2014,
Abstract: We deal with the Hill's spherical vortex, which is an exact solution to the Euler equation, and manage the solution to satisfy the incompressible Navier-Stokes(INS) equations with a viscous term. Once we get a viscous solution to the INS equations, we will be able to analyze the flows with discontinuities in vorticity. In the same procedure, we also present a time developing exact solution to the INS equations, which has a rotation on the axis besides the Hill's vortex.
Vortex solutions of the generalized Beltrami flows to the incompressible Euler equations
Minoru Fujimoto,Kunihiko Uehara,Shinichiro Yanase
Physics , 2015,
Abstract: As for the solutions of the generalized Beltrami flows to the incompressible Euler equations besides the solutions separating radius and axial components, there are only several solutions found as the Hill's vortex solutions. We will present a series of vortex solutions in this category for the generalized Beltrami flows to the incompressible Euler equations.
FFLO Superconductivity near the Antiferromagnetic Quantum Critical Point
Youichi Yanase
Physics , 2008, DOI: 10.1143/JPSJ.77.063705
Abstract: The Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state near the antiferromagnetic quantum critical point (AFQCP) is investigated by analyzing the two dimensional Hubbard model on the basis of the fluctuation exchange (FLEX) approximation. The phase diagram against the magnetic field and temperature is compared with that obtained in the BCS theory. We discuss the influences of the antiferromagnetic spin fluctuation through the quasiparticle scattering, retardation effect, parity mixing and internal magnetic field. It is shown that the FFLO state is stable in the vicinity of AFQCP even though the quasiparticle scattering due to the spin fluctuation is destructive to the FFLO state. The large positive slope dH_{FFLO}/dT and the convex curvature (d^{2}H_{FFLO}/dT^{2} > 0) are obtained, where H_{FFLO} is the critical magnetic field for the second order phase transition from the uniform BCS state to the FFLO state. These results are consistent with the experimental results in CeCoIn_5. The possible magnetic transition in the FFLO state is examined.
Angular Fulde-Ferrell-Larkin-Ovchinnikov state in cold fermion gases in a toroidal trap
Youichi Yanase
Physics , 2009, DOI: 10.1103/PhysRevB.80.220510
Abstract: We study the possibility of angular Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, in which the rotation symmetry is spontaneously broken, in population imbalanced fermion gases near the BCS-BEC crossover. We investigate the superfluid gases at low temperatures on the basis of the Bogoliubov-de Gennes equation, and examine the stability against thermal fluctuations using the T-matrix approach beyond the local-density approximation (LDA). We find that the angular FFLO state is stabilized in the gases confined in the toroidal trap but not in the harmonic trap. The angular FFLO state is stable near the BCS-BEC crossover owing to the formation of pseudogap. Spatial dependences of number density and local population imbalance are shown for an experimental test.
Page 1 /259
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.