Purpose: The clinical significance of newly identified left atrial anatomic abnormalities (LAAA)— accessory appendages, diverticula, septal pouches—by multidetector CT (MDCT) remains unclear. Similar anatomical outpouchings, i.e., the left atrial appendage, have been associated with cardioembolisms and arrhythmia. To test the hypothesis that LAAA are also associated with increased risk of these events, we performed a retrospective analysis to examine the association of LAAA in patients undergoing CT with embolic events and arrhythmia. Methods: 242 patients (mean age 56 SD 12 years, 41% female) were selected who had CT coronary angiography performed with 64-row MDCT between 2007 and 2012 if complete clinical history records were available. CT images were independently reviewed for the presence of LAAA. Association of cerebrovascular accident (CVA) or transient ischemic attack (TIA), atrial fibrillation, and palpitations to LAAA was calculated using odds ratios (OR) with 95% confidence interval (CI) and Fisher’s exact test. Results: After adjusting for age, sex, hypertension, dyslipidemia and diabetes via multiple logistic regression, patients with accessory appendages are more likely to have reported palpitations (OR: 1.80; CI: 1.03 - 3.16). Patients with diverticula and septal pouches are significantly older than those without these abnormalities (p = 0.01 and p = 0.02, respectively). Septal pouches are associated with diabetes (OR: 2.29; 95%CI: 1.15 - 4.54). Conclusions: Accessory left atrial appendages are associated with palpitations. Patients with septal pouches and diverticula are significantly older than those patients without these anatomic abnormalities, suggesting age dependency of these findings. None of these anatomic abnormalities were associated with thromboembolic events after adjustment for potentially confounding comorbidities.

Abstract:
Background: Cardiac output can be estimated during retrospectively gated CT coronary angiography by anatomically determining left ventricular volumes; prospective triggering to minimize radiation precludes this methodology. We propose an alternative method for cardiac output estimation based on preclinical models suggesting that cardiac output may be inversely related to contrast washout from the aortic root during timing bolus scanning, as measured by peak aortic root contrast attenuation. Methods: 34 patients had CT coronary angiography timing bolus performed with 20 ml iodixanol at 5.5 ml/s followed by 20 ml normal saline at 5.5 ml/s through an 18-Ga antecubital catheter. Peak aortic root contrast attenuation was correlated to cardiac output calculated by echocardiography using heart rate stroke volume from biplane Simpson’s method.Results: Mean age was 58 ± 13 years; body surface area, 2.0 ± 0.5 m2. 53% were women. Stroke volume, cardiac output and cardiac index were 67 ± 19 ml, 4.5 ± 1.6 L/min, and 2.2 ± 0.7 L/min/m2, respectively. Peak aortic root contrast attenuation was 207 ± 46 HU and correlated to cardiac output and cardiac index with r = –0.64, p < 0.0001 and r = –0.55, p < 0.001, respectively. Regression analysis estimates cardiac output = –0.02 peak aortic root contrast attenuation +9.1. Conclusion: This novel method for cardiac output estimation by CTCA appears feasible. The CT physiologic parameters using the timing test-bolus data moderately correlated with echocardiographic assessment of cardiac output. The calculation of cardiac output adds important hemodynamic data to anatomic information provided by CTCA, and further development of this method may preserve assessment of left ventricular performance in prospective triggering.

Abstract:
Trifolium alexandrinum, an important forage
legume, suffers from narrow genetic base. The present investigation was envisaged to reveal the inter- and intra-species genetic diversity and
lineage among 64 accessions, representing a global collection, of T. alexandrinum;it’s two probable progenitorspecies
(T. salmoneum and T. subterraneum) and thethree
genetically distant species (T. repens, T. vesiculosum, T. michelianum). A set of Simple Sequence Repeats (SSR)
primer-pairs developed from T.
alexandrinum have shown to amplify alleles across the species under study,
suggesting utility of the newly developed resource for assessing molecular diversity among Trifolium species. These SSRs markers together with previously reported SSRs, derived
from T. repens,enabled to reveal high intra-species polymorphism in T. alexandrinum and successfully
discriminate different species investigated in this study. The diverse
accessions determined herein provide a superior resource for further breeding

Abstract:
Three new copper complexes of mixed ligands derived from Schiff bases (condensation of p-aminoacetanilide and substituted benzaldehydes) with 1,10-phenanthroline have been synthesized and characterized by elemental analysis, IR, UV–Vis, magnetic moments, conductivity and electrochemical measurements. The spectral techniques suggest that all the copper complexes exhibit octahedral geometry. The low electrical conductance of the complexes supports their neutral nature. The monomeric nature of the complexes was assessed from their magnetic susceptibility values. The in vitro biological screening effects of the investigated compounds were tested against the bacteria Escherichia coli, Staphylococcus aureus, and Salmonella typhi and the fungi Rhizopus stolonifer and Candida albicans by the serial dilution method. A comparative study of the MIC values of the Schiff bases and their copper complexes indicates that the metal complexes exhibited higher antibacterial activity than the free ligands. The DNA cleavage ability of the complexes was monitored by the gel electrophoresis technique. It was found that electron withdrawing group substituted copper complex had higher DNA cleavage activity than the other copper complexes.

Abstract:
These lecture notes aim to provide a self-contained, pedagogical introduction to the physics of local constraints, fractionalisation and topological liquids organised around the Rokhsar-Kivelson quantum dimer model. Topics and phenomena covered include emergent photons, SU(2) invariant spin liquids, valence-bond solids and Cantor deconfinement, along with an elementary introduction to the underlying theoretical models and methods.

Abstract:
We created sodium Bose-Einstein condensates in an optically plugged quadrupole magnetic trap (OPT). A focused, 532nm laser beam repelled atoms from the coil center where Majorana loss is significant. We produced condensates of up to $3 \times 10^7$ atoms, a factor of 60 improvement over previous work [1], a number comparable to the best all-magnetic traps, and transferred up to $9 \times 10^6$ atoms into a purely optical trap. Due to the tight axial confinement and azimuthal symmetry of the quadrupole coils, the OPT shows promise for creating Bose-Einstein condensates in a ring geometry.

Abstract:
The position of the two-proton drip line has been calculated for even-even nuclei with $10 \leq Z \leq 82$ in the framework of the relativistic mean-field (RMF) theory. The current model uses the NL3 effective interaction in the mean-field Lagrangian and describes pairing correlations in the Bardeen-Cooper-Schrieffer (BCS) formalism. The predictions of the RMF theory are compared with those of the Hartree-Fock+BCS approach (with effective force Skyrme SIII) and the finite-range droplet model (FRDM) and with the available experimental information.

Abstract:
We investigate the problem of succinctly representing an arbitrary permutation, \pi, on {0,...,n-1} so that \pi^k(i) can be computed quickly for any i and any (positive or negative) integer power k. A representation taking (1+\epsilon) n lg n + O(1) bits suffices to compute arbitrary powers in constant time, for any positive constant \epsilon <= 1. A representation taking the optimal \ceil{\lg n!} + o(n) bits can be used to compute arbitrary powers in O(lg n / lg lg n) time. We then consider the more general problem of succinctly representing an arbitrary function, f: [n] \rightarrow [n] so that f^k(i) can be computed quickly for any i and any integer power k. We give a representation that takes (1+\epsilon) n lg n + O(1) bits, for any positive constant \epsilon <= 1, and computes arbitrary positive powers in constant time. It can also be used to compute f^k(i), for any negative integer k, in optimal O(1+|f^k(i)|) time. We place emphasis on the redundancy, or the space beyond the information-theoretic lower bound that the data structure uses in order to support operations efficiently. A number of lower bounds have recently been shown on the redundancy of data structures. These lower bounds confirm the space-time optimality of some of our solutions. Furthermore, the redundancy of one of our structures "surpasses" a recent lower bound by Golynski [Golynski, SODA 2009], thus demonstrating the limitations of this lower bound.

Abstract:
We construct a two-dimensional microscopic model of interacting quantum dimers that displays an infinite number of periodic striped phases in its T=0 phase diagram. The phases form an incomplete devil's staircase and the period becomes arbitrarily large as the staircase is traversed. The Hamiltonian has purely short-range interactions, does not break any symmetries of the underlying square lattice, and is generic in that it does not involve the fine-tuning of a large number of parameters. Our model, a quantum mechanical analog of the Pokrovsky-Talapov model of fluctuating domain walls in two dimensional classical statistical mechanics, provides a mechanism by which striped phases with periods large compared to the lattice spacing can, in principle, form in frustrated quantum magnetic systems with only short-ranged interactions and no explicitly broken symmetries.

Abstract:
Determination of status of water quality of a river or any other water sources is highly indeterminate. It is necessary to have a competent model to predict the status of water quality and to advice for type of water treatment for meeting different demands. One such model (UNIQ2007) is developed as an application software in water quality engineering. The unit operates in a fuzzy logic mode including a fuzzification engine receiving a plurality of input variables on its input and being adapted to compute membership function parameters. A processor engine connected downstream of the fuzzification unit will produce fuzzy set, based on fuzzy variable viz. DO, BOD, COD, AN, SS and pH. It has a defuzzification unit operative to translate the inference results into a discrete crisp value of WQI. The UNIQ2007 contains a first memory device connected to the fuzzification unit and containing the set of membership functions, a secondary memory device connected to the defuzzification unit and containing the set of crisp value which appear in the THEN part of the fuzzy rules and an additional memory device connected to the defuzzification unit. More advantageously, UINQ2007 is constructed with control elements having dynamic fuzzy logic properties wherein target non-linearity can be input to result in a perfect evaluation of water quality. The development of the fuzzy model with one river system is explained in this paper. Further the model has been evaluated with the data from few rivers in Malaysia, India and Thailand. This water quality assessor probe can provide better quality index or identify the status of river with 90% perfection. Presently, WQI in most of the countries is referring to physic-chemical parameters only due to great efforts needed to quantify the biological parameters. This study ensures a better method to include pathogens into WQI due to superior capabilities of fuzzy logic in dealing with non-linear, complex and uncertain systems.