Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Search Results: 1 - 10 of 81 matches for " Nacer Bellaloui "
All listed articles are free for downloading (OA Articles)
Page 1 /81
Display every page Item
Effect of Water Stress and Foliar Boron Application on Seed Protein, Oil, Fatty Acids, and Nitrogen Metabolism in Soybean  [PDF]
Nacer Bellaloui
American Journal of Plant Sciences (AJPS) , 2011, DOI: 10.4236/ajps.2011.25084
Abstract: Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitrate reductase activity (NRA), and nitrogenase activity (NA). A repeated greenhouse experiment was conducted where one set of soybean plants were subjected to water stress (WS), and the other set was watered (W). Foliar boron (B) was applied at rate of 0.45 kg·ha-1. Treatments were watered-plants with no FB (W), watered-plants with FB (WB), water-stress plants with no FB (WS), and water-stress plants with FB (WSB). The results showed that seed protein and oil percentage were significantly (P < 0.05) higher in WB than other treatments. Oleic acid increased and linolenic acid decreased in WB and WSB. Significant (P < 0.05) increase in NRA in leaves and roots and NA occurred in WB compared to W. In WSB, NRA in leaves and roots or nitrogenase activities were higher than those in WS. Nitrate reductase activity in nodules was greater in WB than in W, and was higher in WSB than in WS. The concentration of B in leaves and seed were significantly (P < 0.05) higher in W than in WS. Seed 15N/ 14N and 13C/12C natural abundance were altered between watered-and watered-stressed plants. These results suggest that water stress and FB can influence seed composition, and nitrogen metabolism, and 15N/14N and 13C/12C ratios, reflecting environmental and metabolic changes in carbon and nitrogen fixation pathways. Lack of B translocation from leaves to seed under water stress may suggest a possible mechanism of limited B translocation under water stress. These findings may be beneficial to breeders to select for B translocation efficiency under drought conditions. Altered 15N/14N and 13C/12C under water stress can be used as a tool to select for drought tolerance using N and C isotopes in the breeding programs.
Soybean Seed Phenol, Lignin, and Isoflavones and Sugars Composition Altered by Foliar Boron Application in Soybean under Water Stress  [PDF]
Nacer Bellaloui
Food and Nutrition Sciences (FNS) , 2012, DOI: 10.4236/fns.2012.34080
Abstract: Previous research showed that foliar boron (B) application at flowering or seed-fill growth stages altered seed protein, oil, and fatty acids. The objective of this research was to investigate the effects of foliar B fertilizer on seed phenolics (phenol, lignin, and isoflavones) and sugars concentrations. A repeated greenhouse experiment was conducted on soybean [(Glycine max(L.) Merr.)] under watered and water-stressed conditions. Soybean plants were divided into different sets, and each set was subjected to one of the following treatments: W = plants were watered with no foliar B; WB = plants were watered and received foliar B; WS = plants were water-stressed with no foliar B; WSB = plants were waterstressed and received foliar B. Foliar B was applied at rate of 0.45 kg/ha twice at flowering and twice at seed-fill stages. The results showed that total phenol and lignin concentrations were higher in seed collected from water-stressed plants compared with those collected from watered plants whether B was applied or not. The higher total phenol and lignin concentration in seed collected of water-stressed plants may be due to B-deficiency in plant tissues. Application of B resulted in higher concentrations of total seed B and isoflavones under watered and water-stressed plants. Higher cell wall B was higher in water-stressed plants than in watered plants, having an opposite trend to total B. Application of B resulted in higher seed sucrose in watered and water-stressed plants, but raffinose and stachyose were significantly higher under water-stressed plants. The research demonstrated that foliar B fertilizer altered seed phenol, lignin, isoflavones, and sugars, suggesting that B involved in phenolics and sugar metabolism. The higher cell wall B in waterstressed plants than in watered plants supports previous research that B has mainly a structural role. The higher sucrose resulting from foliar B in watered plants is desirable as sucrose contributes to seed quality. The increase of raffinose and stachyose concentrations in seed of water-stressed plants is undesirable as raffinose, and especially stachyose may be involved in water stress/drought tolerance. The current knowledge would help soybean breeders select for higher phenolic compounds and desirable sugars for higher seed qualities under drought conditions.
Soybean Seed Phenol, Lignin, and Isoflavones Partitioning as Affected by Seed Node Position and Genotype Differences  [PDF]
Nacer Bellaloui
Food and Nutrition Sciences (FNS) , 2012, DOI: 10.4236/fns.2012.34064
Abstract: Factors controlling the production and partitioning of seed phenolics within soybean are not understood. Understanding these factors may justify selection for higher levels of seed phenolics because of their beneficial impact on human health and soybean defense mechanism against diseases. The objective of this research was to investigate the partitioning of seed phenolics (phenol, lignin, and isoflavones) along the main stem of soybean genotypes. A repeated green- house experiment was conducted on different soybean genotypes of different maturity and different stem archi-tecture (determinate and indeterminate). Genotypes were DT 97-4290, maturity group (MG) IV; Stressland, MG IV; Hutcheson, MG V; and Tracy-M, MG VI. Seed were harvested from top and bottom nodes at seed-fill stage (R6) and harvest ma- turity stage (R8). At R6, seed phenolic compounds (phenol, lignin, and isoflavones daidzein, genistein, and glycitein) were greater in the bottom seed than the top seed. This trend was observed in DT 97-4290, Tracy-M, and Hutcheson, but not in Stressland. Also, this trend was more obvious with daidzein and genistein isoflavones than glycitein. The maximum phenolic compounds were recorded at R8. The higher phenolic compounds concentration in bottom seed than in top seed was accompanied by higher cell wall boron (B) percentage and lower total B in bottom seed. The current research demonstrated that phenolic compounds partitioned differently between the top and bottom seed nodes. This trend cannot be generalized in soybean genotypes unless enough germplasm is tested. The partitioning of higher phenolic compounds concentration along the main stem would allow for single seed selection in the breeding program for higher levels of phenolic compounds and for accurate measurements of seed phenolics in breeding lines. The associa- tion of B trend with phenolic compound trend may suggest B involvement in phenolic metabolism, and support the structural role of B. Breeding for higher levels of phenolics, especially isoflavones, would benefit human health, pro- vide higher nutritional value of soy meal, and increase plant disease resistance.
Effects of Planting and Maturity Dates on Shattering Patterns under Early Soybean Production System  [PDF]
Lingxiao Zhang, Nacer Bellaloui
American Journal of Plant Sciences (AJPS) , 2012, DOI: 10.4236/ajps.2012.31013
Abstract: Seed shattering is a common problem in early soybean production system (ESPS) in the Midsouth, which mainly uses maturity group (MG) IV soybeans. Many studies have been conducted on the genetics of soybean shattering resistance for individual varieties; however, information on the physiology of soybean shattering pattern under specific environmental conditions, which is often critical to soybean growers, is very limited. Field experiments were conducted at Stoneville MS from 2007 to 2009 to investigate the shattering patterns of 80-132 MG IV soybean varieties each year. Results from 2007 and 2008 indicated that, when April-planted MG IV soybeans matured in mid- to late August, pods of most soybean varieties did not shatter within the first three weeks after maturity (WAM) and there was no significant shattering effect on final yields. However, differences in pod shattering among the varieties became apparent in the fourth WAM. Late-planted MG IV soybeans, which matured in early September, had a low shattering rate and could hold seeds up to 6 WAM before reaching a critical shattering point. Most soybean varieties planted in April 2009 did not show significant pod shattering by the end of the fourth WAM. The critical point of shattering was not reached until 6 - 7 WAM. Relatively lower temperatures and abundant rainfall during the late growing season in 2009 may be the main reasons causing delayed shattering in April-planted MG IV soybeans. Results from the May-planting of 2007 and the April-planting of 2009 indicated that soybeans maturing after September have much less problematic shattering. Different weather patterns, especially temperature and rainfall in each year could be essential factors affecting seed shattering patterns.
Evaluation of phosphorus and nitrogen balances as an indicator for the impact of agriculture on environment: A comparison of a case study from Poland and Mississippi US  [PDF]
Renata Gaj, Nacer Bellaloui
Agricultural Sciences (AS) , 2012, DOI: 10.4236/as.2012.32036
Abstract: The objective of this research was to quantify the changes of nitrogen (N) and phosphorus (P) balances in Poland and Mississippi (MS), USA. Nutrient balances were calculated as difference between input and output in the agricultural system according to Organisation for Economic Cooperation and Development (OECD) methodology. A positive nutrient balance means that a potential environmental problem may result from that nutrient; a negative nutrient balance means there is a potential yield loss. The N and P soil surface balances for Poland and MS were calculated for the year 1998 through 2008. The results showed that both MS and Poland had positive N and P balances, indicating that there was a surplus of N and P. The average balance for N was 48 kg·ha-1 in Poland and 102 kg·ha-1 in MS. For P, it was 3 kg·ha-1 in Poland and 19 kg P kg·ha-1 in MS per cultivated area. This research demonstrated that the nutrient balance of N or P depended on the efficient use of each nutrient and type and source of fertilizer used. This research is significant for N and P fertilizer management and their impact on agriculture production and environment health.
Soybean seed protein, oil, fatty acids, N, and S partitioning as affected by node position and cultivar differences  [PDF]
Nacer Bellaloui, Anne M. Gillen
Agricultural Sciences (AS) , 2010, DOI: 10.4236/as.2010.13014
Abstract: The mechanisms controlling the partitioning of seed composition constituents along the main stem in soybean are still controversial. Therefore, the objective of this study was to investigate seed protein, oil, and fatty acids partitioning in soybean cultivars along the main stem. The cultivars were DT97-4290, maturity group (MG) IV; Stressland, MG IV; Hutcheson, MG V; TracyM, MG VI. Seeds were harvested based on position on the plant (top nodes, middle nodes, and bottom nodes). At R8 (physiological maturity stage), DT97-4290, Hutcheson, and Stressland had higher percentage of protein and oleic acid and lower percentage of oil and linolenic acid in top node seed compared with bottom node seed. The increase of protein in top node compared with the bottom node across the two experiments ranged from 15.5 to 19.5%, 7.0 to 10.5%, 14.2 to 15.8%, 11.2 to 16.5%, respectively for DT97-4290, Hutcheson, Stressland, and TracyM. Except for TracyM, the increase of oleic acid in the top node ranged from 45.4 to 93%, depending on the cultivar. Conversely, the decrease in the top node seed ranged from 14.4 to 26.8% for oil and from 5.7 to 34.4% for linolenic acid, depending on the cultivar. The partitioning trend of seed composition constituents at R6 (seed - fill stage) was inconsistent. Except for Stressland, seed oleic acid was higher at R6 than at R8. The higher protein and oleic acid concentrations in the top node seed was accom- panied by higher activity of nitrate reductase activity, higher chlorophyll concentration, higher nitrogen (N) and sulfur (S) percentages in the fully expanded leaves at R5-R6 growth stage, and higher seed nitrogen (N) and sulfur (S) percentages in DT 97-4290 and Stressland. The current research suggests that the partitioning of seed protein, oil, and fatty acids in nodes along the plant depended on the position of node on the main stem, cultivar differences, seed N and S status, and tissue N and S partitioning. The higher nitrate reductase activity at the top nodes, accompanied higher protein and oleic acid, and the changes of oleic acid at R6 and R8 along the stem, were not previously reported, and need further investigation. The current knowledge is useful for soybean germplasm selection for desirable traits such protein and oleic acid, and for accurate measurements of seed composition constituents in breeding lines.
Effects of chelating agents on protein, oil, fatty acids, and minerals in soybean seed  [PDF]
Mudlagiri B. Goli, Manju Pande, Nacer Bellaloui
Agricultural Sciences (AS) , 2012, DOI: 10.4236/as.2012.34061
Abstract: Soybean seed is a major source of protein and oil for human diet. Since not much information is available on the effects of chelating agents on soybean seed composition constituents, the current study aimed to investigate the effects of various chelating agents on soybean [(Glycine max (L.) Merr.)] seed protein, oil, fatty acids, and mineral concentrations. Three chelating agent [citric acid (CA), disodium EDTA (DA), and Salicylic acid (SA)] were applied separately or combined with ferrous (Fe2+) ion (CA + Fe, EDTA + Fe, and SA + Fe) to three-week-old soybean plants. After application, the plants were allowed to grow until harvest maturity under greenhouse conditions. The results showed that CA, DA, SA, and Fe resulted in an increase of oleic acid from 13.0% to 33.5%. However, these treatments resulted in a decrease of linolenic acid from 17.8 to 31.0%. The treatments with CA and SA applications increased protein from 2.9% to 3.4%. The treatments DA + Fe and SA + Fe resulted in an increase in oil from 6.8% to 7.9%. Seed macro- and micro-elements were also altered. The results indicated that the CA, SA, DA, and Fe treatments can alter seed protein, oil, fatty acids, and mineral concentrations. Further studies are needed for conclusive results.
Effects of Genetics and Environment on Fatty Acid Stability in Soybean Seed  [PDF]
Nacer Bellaloui, Alemu Mengistu, My Abdelmajid Kassem
Food and Nutrition Sciences (FNS) , 2013, DOI: 10.4236/fns.2013.49A1024

Although seed oil production and composition are genetically controlled, changes of oil level and oil composition across genotypes and environments such as drought and temperature were observed. The mechanisms of how genotypes interact with environment, affecting oil production and composition, are still not well understood. The objective of this research was to investigate the effect of drought/water stress and temperature on soybean genotypes. Two soybean genotypes of maturity group (MG) II (PI 597411 B and PI 597408) and two of MG VI (Arksoy and PI 437726) were used. A repeated greenhouse experiment to study the effect of water stress and a repeated growth chamber experiment to study the effect of temperature were conducted. The results showed that both water stress and high temperature altered seed oil composition by increasing oleic acid and decreasing linoleic and linolenic acid concentrations. Severe water stress (soil water potential between -150 to -200 kPa) or high temperature (40/33, day/night) resulted in higher palmitic acid and lower stearic acid. Genotypes differed in their responses to water stress or temperature. Analyses of seed carbohydrates (glucose, fructose, sucrose, raffinose, and stachyose) showed a significant decline of glucose, fructose, and sucrose and a significant increase of stachyose concentration by water stress and high temperature. Analyses of natural abundance of δ15N and δ13C isotopes showed changes in sources of nitrogen and carbon fixation, possibly affecting nitrogen and carbon metabolism pathways. The research demonstrated that both water stress and high temperature altered oil production and composition, and this could be partially related to limited availability and movement of carbohydrates from leaves to seed. Further research to investigate the enzymes controlling fatty acids conversion and nitrogen and carbon metabolism is needed.

Effect of Foliar and Soil Application of Potassium Fertilizer on Soybean Seed Protein, Oil, Fatty Acids, and Minerals  [PDF]
Manju Pande, Mudlagiri B. Goli, Nacer Bellaloui
American Journal of Plant Sciences (AJPS) , 2014, DOI: 10.4236/ajps.2014.55069

The objective of this research was to evaluate the effectiveness of soil and foliar application of potassium (K) on leaf and seed mineral concentration levels, and seed composition (protein, oil, fatty acids, and minerals). Soybean cultivar (Pioneer 95470) of maturity group 5.7 was grown in a repeated greenhouse experiment in a randomized complete block design. Treatment consisted of two concentrations of foliar K application (T1, rate of 1.75% and T2, rate of 2.5%) and soil application (T3, rate of 190 mg/kg and T4, rate of 380 mg/kg). Potassium was applied for each type at V3 (vegetative) and R3 (beginning of seed pod initiation) stages. The results showed higher K and S concentrations in leaves in T1 and T2. The concentrations of B and Zn decreased in all treatments, whereas Fe concentration increased in T1 and T3. In seeds, most mineral concentrations were stable, except for Fe which increased in both T1 and T3. Seed protein percentage increased 3.0% in T3 compared with the control (no K application). Seed oil percentage showed a general decrease in all the treatments, except for 3.2% increase in T4. Palmitic acid percentages showed significant increase in all concentrations, the highest percentage increase of 16.9% was observed in T4. Stearic acid increased in T2 and T3. Linoleic acid percentages increased in both foliar treatments, but linolenic acid percentage increased in high soil treatment T4 alone, with an increase of 12.2% in comparison to the control. Significant decrease (15.8%) in linoleic acid was found in foliar application, T2. Oleic acid decreased uniformly in all treatments, where the highest decrease (19.2%) was observed in soil application, T4. Our research demonstrated that both foliar and soil application of K were found to selectively alter seed composition. Further research is needed to be conducted under field conditions before conclusions can be made.

Seed protein, oil, fatty acids, and minerals concentration as affected by foliar K-glyphosate applications in soybean cultivars  [PDF]
Manju Pande, Mudlagiri B. Goli, Tyneiseca Epps, Nacer Bellaloui
Agricultural Sciences (AS) , 2012, DOI: 10.4236/as.2012.36103
Abstract: Previous studies showed that glyphosate (Gly) may chelate cation nutrients, including potassium (K), which might affect the nutritional status of soybean seed. The objective of this study was to evaluate seed composition (protein, oil, fatty acids, and minerals) as influenced by foliar applications of K + Gly. A greenhouse experiment was conducted at Mississippi Valley State University, using two glyphosate-resistant soybean cultivars DK 4968 and Pioneer 95Y70 grown in a randomized complete block design. The treatments were foliar applications of K alone, Gly alone, K + Gly combined, and nontreated control (C). A single application of potassium (1.75% as K2SO4) was applied, and Gly was applied at a rate of 0.75 ae/ha at V5 stage. Leaf samples were harvested one week after treatment (1WAT) and 3WAT. Mature seeds were collected at harvest maturity (R8). The results showed that K, nitrogen (N), and phosphorus (P) concentrations increased in leaves in K alone and K + Gly treatments at 1WAT, but significantly increased at 3WAT in all treatments. The concentration of iron (Fe) and zinc (Zn) showed a decrease in leaf concentration in Gly and K + Gly treatments compared to C. Boron (B) concentration increased in Gly treatment. Seed protein percentage was higher in all treatments in cultivar DK 4968, and the increase was about 4.0% in K treatment, 6.9% in Gly treatment, and 3.5% in K + Gly treatment compared to C. The opposite trend was observed in oil concentration, especially in Gly treatment where the percentage decrease was 11.2% compared to C. Stearic fatty acid was significantly higher in K + Gly treatment compared to K treatment for DK 4968. A higher percentage increase in linolenic acid was observed in DK 4968 in K treatment (an increase of 24.5%) and in K + Gly treatment (an increase of 29.5%) compared to C. In Pioneer 95Y70, the decrease in oil was 2.7% in K treatment and 2.3% in K + Gly treatment compared to C. Stearic acid in Pioneer 95Y70 was significantly higher in Gly treatment, an increase of 8.3%, compared to C. Our research demonstrated that foliar application of K and Gly altered mineral concentration in leaves and shifted seed composition towards protein and stearic concentration. Further research under field conditions is needed before final conclusions are made.
Page 1 /81
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.