Abstract:
Plastic monoideism is the supposed basis of hypnosis, but has never been experimentally demonstrated. The aim of the paper presented herein is to demonstrate that plastic monoideism exists and can be put in evidence by functional magnetic resonance (fMRI). To this aim, fMRI brain areas activation was examined in 20 highly hypnotizable young participants during a task represented by hypnotic analgesia. Inhibition of pain transmission from periphery to brain cortex was demonstrated during hypnotic analgesia by lack of activation of central somatosensory areas. At the same time, the Brodmann areas 9, 25, 32 and 47 were highly activated. This indicates that during a hypnotic task the iper-activity of certain brain areas inhibits the other ones. This is just, for the neurobiologist, what plastic monoideism is for the clinic hypnotist. The hyper-activated areas represent the physiological basis of the monoideism, which was therefore confirmed by brain imaging.

Abstract:
A new method of growing human embryonic neurons in glass capillary is proposed. Beside the simplicity of the method, the main advantages are represented by the possibility to study the interactions between a directional flow of human motile cells (leukocytes, red blood cells, sperm cells) and the neuronal monolayer and to evaluate the toxicity on neuronal growth of a copper wire or others filiform materials introduced in the glass capillary. The neurotoxicity of copper is verified by this device, because copper wire inserted into the capillary interferes with engraftment and growth of neuronal cells. No interference by neuronal monolayer was found with the flow of human sperms trough the capillary. Also the flow of leukocytes and erythrocytes occurred without agglutination or adhesion to cellular monolayer with serial observation at 30, 60, 120 minutes. A further advantage of this method is the possibility of withdrawing culture medium microquantities from capillary in order to study neuronal secretory activity.

Abstract:
In this paper we study a continuous time stochastic inventory model for a commodity traded in the spot market and whose supply purchase is affected by price and demand uncertainty. A firm aims at meeting a random demand of the commodity at a random time by maximizing total expected profits. We model the firm's optimal procurement problem as a singular stochastic control problem in which controls are nondecreasing processes and represent the cumulative investment made by the firm in the spot market (a so-called stochastic "monotone follower problem"). We assume a general exponential L\'evy process for the commodity's spot price, rather than the commonly used geometric Brownian motion, and general convex holding costs. We obtain necessary and sufficient first order conditions for optimality and we provide the optimal procurement policy in terms of a "base inventory" process; that is, a minimal time-dependent desirable inventory level that the firm's manager must reach at any time. In particular, in the case of linear holding costs and exponentially distributed demand, we are also able to obtain the explicit analytic form of the optimal policy and a probabilistic representation of the optimal revenue. The paper is completed by some computer drawings of the optimal inventory when spot prices are given by a geometric Brownian motion and by an exponential jump-diffusion process. In the first case we also make a numerical comparison between the value function and the revenue associated to the classical static "newsvendor" strategy.

Abstract:
The possible use of open-cell metal foams for particle accelerator beam liners is considered. Available materials and modeling tools are reviewed, potential pros and cons are pointed out, and a study program is outlined.

Abstract:
O objetivo deste trabalho foi avaliar o conhecimento dos estudantes do último ano de gradua o em Enfermagem, de uma Escola de Enfermagem do interior do estado de S o Paulo, sobre a síndrome da resposta inflamatória sistêmica (SIRS), sepse, sepse grave e choque séptico. Foi realizado um estudo descritivo e quantitativo, com a participa o de 77 estudantes, no qualse utilizou um instrumento elaborado pelas autoras e validado em seu conteúdo e aparência. Os participantes relataram que possuem pouco conhecimento sobre a temática (58%) e que o curso de gradua o forneceu pouca informa o sobre sepse (65%). Apenas 26%, 12%, 19% e 26% souberam reconhecer quando um paciente encontra-se, respectivamente, com SIRS, sepse, sepse grave e choque séptico. Nossos resultados demonstraram que os estudantes possuem pouco conhecimento sobre sepse, e o pouco conhecimento sobre a temática pode estar relacionado com o ensino deficitário desse assunto no curso de gradua o.

Abstract:
For a general class of analytic $f(R,R_{\alpha\beta}R^{\alpha\beta},R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta})$ we discuss the gravitational lensing in the Newtonian Limit of theory. From the properties of Gauss Bonnet invariant it is successful to consider only two curvature invariants between the Ricci and Riemann tensor. Then we analyze the dynamics of photon embedded in a gravitational field of a generic $f(R,R_{\alpha\beta}R^{\alpha\beta})$-Gravity. The metric is time independent and spherically symmetric. The metric potentials are Schwarzschild-like, but there are two additional Yukawa terms linked to derivatives of $f$ with respect to two curvature invariants. Considering the case of a point-like lens, and after of a generic matter distribution of lens, we study the deflection angle and the images angular position. Though the additional Yukawa terms in the gravitational potential modifies dynamics with respect to General Relativity, the geodesic trajectory of photon is unaffected by the modification in the action by only $f(R)$. While we find different results (deflection angle smaller than one of General Relativity) only thank to introduction of a generic function of Ricci tensor square. Finally we can affirm the lensing phenomena for all $f(R)$-Gravities are equal to the ones known from General Relativity. We conclude the paper showing and comparing the deflection angle and image positions for $f(R,R_{\alpha\beta}R^{\alpha\beta})$-Gravity with respect to ones of General Relativity.

Abstract:
In this communication we present a generalization of the map formalism, introduced in [1] and [2], to the analysis of electron flux at the chamber wall with particular reference to the exploration of LHC conditioning scenarios.

Abstract:
Hypnosis is a condition of modified consciousness (monoideism) resulting from a mental representation able to produce psychological and physical effects. The general belief is that hypnosis is conscious and voluntary, but the practical demonstration of this hypothesis is far to be demonstrated. Twenty healthy highly hypnotizable volunteers were studied during through functional magnetic resonance imaging during a task. The task was necessary because functional magnetic resonance imaging gives no interesting results in neutral hypnosis. During the hypnotic task, the prefrontal dorso-lateral cortex, genual cortex, dorsal anterior cingulate cortex, and orbital portion of the inferior frontal convolution (i.e. the Broadmann areas 9, 25, 32 and 47) were activated. Such areas are associated to egoic consciousness and voluntary processes. The results show that the hypothesis that hypnosis is conscious and voluntary is correct.

Abstract:
A general analytic procedure is developed for the post-Newtonian limit of $f(R)$-gravity with metric approach in the Jordan frame by using the harmonic gauge condition. In a pure perturbative framework and by using the Green function method a general scheme of solutions up to $(v/c)^4$ order is shown. Considering the Taylor expansion of a generic function $f$ it is possible to parameterize the solutions by derivatives of $f$. At Newtonian order, $(v/c)^2$, all more important topics about the Gauss and Birkhoff theorem are discussed. The corrections to "standard" gravitational potential ($tt$-component of metric tensor) generated by an extended uniform mass ball-like source are calculated up to $(v/c)^4$ order. The corrections, Yukawa and oscillating-like, are found inside and outside the mass distribution. At last when the limit $f\rightarrow R$ is considered the $f(R)$-gravity converges in General Relativity at level of Lagrangian, field equations and their solutions.

Abstract:
The Higher Order Theories of Gravity - $f(R, R_{\alpha\beta}R^{\alpha\beta})$ - theory, where $R$ is the Ricci scalar, $R_{\alpha\beta}$ is the Ricci tensor and $f$ is any analytic function - have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies and other relevant astrophysical phenomena. It is a crucial point testing these alternative theories in the so called weak field and newtonian limit of a $f(R, R_{\alpha\beta}R^{\alpha\beta})$ - theory. With this "perturbation technique" it is possible to find spherically symmetric solutions and compare them with the ones of General Relativity. On both approaches we found a modification of General Relativity: the behaviour of gravitational potential presents a modification Yukawa - like in the newtonian case and a massive propagation in the weak field case. When the modification of the theory is removed (i.e. $f(R, R_{\alpha\beta}R^{\alpha\beta}) = R$, Hilbert - Einstein lagrangian) we find the usual outcomes of General Relativity. Also the Noether symmetries technique has been investigated to find some time independent spherically symmetric solutions.