Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2020 ( 70 )

2019 ( 749 )

2018 ( 836 )

2017 ( 806 )

Custom range...

Search Results: 1 - 10 of 488688 matches for " M. V. Uspensky "
All listed articles are free for downloading (OA Articles)
Page 1 /488688
Display every page Item
Altitude integration effects in the skewness of type-2 coherent echoes
A. V. Kustov,M. V. Uspensky
Annales Geophysicae (ANGEO) , 2003,
Abstract: Possible effects of signal reception from different electrojet heights in a skewness of auroral coherent spectra are studied assuming that the "inherent" spectral line due to plasma turbulence is of type-2 and symmetrical. For reasonable ionospheric parameters, the altitude integrated spectra are expected to be skewed negatively for positive mean Doppler shift, in agreement with radar observations at small aspect angles. However, the spectra could be skewed positively if the turbulent layer or the electron density profile is shifted to high altitudes of ~120 km. This change of spectral shape will not be observed experimentally if, at the same time, either the electron collision frequency is enhanced or the "inherent" spectral width is increased. Observational results are discussed in view of the predictions given.
STARE velocity at large flow angles: is it related to the ion acoustic speed?
M. V. Uspensky, A. V. Koustov,S. Nozawa
Annales Geophysicae (ANGEO) , 2006,
Abstract: The electron drift and ion-acoustic speed in the E region inferred from EISCAT measurements are compared with concurrent STARE radar velocity data to investigate a recent hypothesis by Bahcivan et al. (2005), that the electrojet irregularity velocity at large flow angles is simply the product of the ion-acoustic speed and the cosine of an angle between the electron flow and the irregularity propagation direction. About 3000 measurements for flow angles of 50°–70° and electron drifts of 400–1500 m/s are considered. It is shown that the correlation coefficient and the slope of the best linear fit line between the predicted STARE velocity (based solely on EISCAT data and the hypothesis of Bahcivan et al. (2005)) and the measured one are both of the order of ~0.4. Velocity predictions are somewhat better if one assumes that the irregularity phase velocity is the line-of-sight component of the E×B drift scaled down by a factor ~0.6 due to off-orthogonality of irregularity propagation (nonzero effective aspect angles of STARE observations).
Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters
M. V. Uspensky, P. Janhunen, A. V. Koustov,K. Kauristie
Annales Geophysicae (ANGEO) , 2011,
Abstract: Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS) with the flow angle of observations (radar look direction with respect to the E×B electron drift). The data set available consists of ~6000 points for flow angles of 40–85° and electron drifts between 500 and 2000 m s 1. The EISCAT electron density N(h)-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2–4 percent react nearly linearly to the electron drift velocity in the range of 500–1000 m s 1 but the rate of increase slows down at electron drifts >1000 m s 1 and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses.
CUTLASS HF radar observations of high-velocity E-region echoes
M. V. Uspensky,A. V. Koustov,P. Eglitis,A. Huuskonen
Annales Geophysicae (ANGEO) , 2003,
Abstract: A short event of high-velocity E-region echo observations by the Pykkvibaer HF radar is analysed to study echo parameters and the echo relation to the Farley-Buneman plasma instability. The echoes were detected in several beams aligned closely to the magnetic L-shell direction. Two echo groups were identified: one group corresponded to the classical type 1 echoes with velocities close to the nominal ion-acoustic speed of 400 ms–1 , while the other group had significantly larger velocities, of the order of 700 ms–1 . The mutual relationship between the echo power, Doppler velocity, spectral width and elevation angles for these two groups was studied. Plotting of echo parameters versus slant range showed that all ~700 ms–1 echoes originated from larger heights and distances of 500–700 km, while all ~400 ms–1 echoes came from lower heights and from farther distances; 700–1000 km. We argue that both observed groups of echoes occurred due to the Farley-Buneman plasma instability excited by strong ( ~70 mVm–1 ) and uniformly distributed electric fields. We show that the echo velocities for the two groups were different because the echoes were received from different heights. Such a separation of echo heights occurred due to the differing amounts of ionospheric refraction at short and large ranges. Thus, the ionospheric refraction and related altitude modulation of ionospheric parameters are the most important factors to consider, when various characteristics of E-region decametre irregularities are derived from HF radar measurements. Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; polar ionosphere)
The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region
M. V. Uspensky, R. J. Pellinen,P. Janhunen
Annales Geophysicae (ANGEO) , 2008,
Abstract: The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos||VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).
Meridional motions of the afternoon radar aurora, auroral electrojets, and absorption patches under variable IMF conditions
R. A. Makarevitch, F. Honary, A. V. Koustov,M. V. Uspensky
Annales Geophysicae (ANGEO) , 2004,
Abstract: The meridional motions of the CUTLASS HF and STARE VHF coherent echoes, IMAGE equivalent electrojet currents, and IRIS absorption patches during the postnoon/early-evening event of 14 February 2000 are presented. The motions were found to be synchronous, to a first approximation, for all instruments. The temporal correlation between motions in the radar and magnetometer data was exceptionally good, although spatially the areas with the E-region backscatter and most intense equivalent currents were not coincident, with the HF (VHF) echoes being shifted 100–200km (20–50km) equatorward (poleward). The meridional motions of the radar echoes and electrojet currents appeared to be controlled by the IMF Bz changes; the meridional propagation direction was equatorward (poleward) during the intervals when the IMF was southward (northward), with one exception when the poleward progression continued after the IMF southward turning. We relate the observed meridional motion patterns to the polar cap expansion/contraction during variable IMF conditions and discuss the relative importance of two types of processes: the dayside reconnection and IMF-triggered substorms. We also investigate the irregularity Doppler velocity for the STARE (144MHz) and CUTLASS (12MHz) observations at large flow angles in the context of the eastward and westward electrojet systems. We show that the 144-MHz Doppler velocity is determined by a combination of two factors: the sense of electrojet currents and the aspect angle conditions within the STARE field of view. Finally, the behavior of small dayside enhancements of the IRIS absorption (up to 0.5dB at 38.2MHz) accompanying the radar echoes and electrojet currents is examined. Since the velocity of the meridional displacements was close to that of the poleward/equatorward progressing intense currents, it is suggested that the absorption patches observed during the event were related to the heating of the E-region plasma by the unstable plasma waves in the regions of enhanced electric fields. Key words. Ionosphere (auroral ionosphere; electric fields and currents; plasma convection)
Velocities of auroral coherent echoes at 12 and 144 MHz
A. V. Koustov,D. W. Danskin,M. V. Uspensky,T. Ogawa
Annales Geophysicae (ANGEO) , 2003,
Abstract: Two Doppler coherent radar systems are currently working at Hankasalmi, Finland, the STARE and CUTLASS radars operating at ~144 MHz and ~12 MHz, respectively. The STARE beam 3 is nearly co-located with the CUTLASS beam 5, providing an opportunity for echo velocity comparison along the same direction but at significantly different radar frequencies. In this study we consider an event when STARE radar echoes are detected at the same ranges as CUT-LASS radar echoes. The observations are complemented by EISCAT measurements of the ionospheric electric field and electron density behaviour at one range of 900 km. Two separate situations are studied; for the first one, CUTLASS observed F-region echoes (including the range of the EIS-CAT measurements), while for the second one CUTLASS observed E-region echoes. In both cases STARE E-region measurements were available. We show that F-region CUT-LASS velocities agree well with the convection component along the CUTLASS radar beam, while STARE velocities are typically smaller by a factor of 2–3. For the second case, STARE velocities are found to be either smaller or larger than CUTLASS velocities, depending on the range. Plasma physics of E-and F-region irregularities is discussed in attempt to explain the inferred relationship between various velocities. Special attention is paid to ionospheric refraction that is important for the detection of 12-MHz echoes. Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere)
Flow angle dependence for the asymmetry of broad 50-MHz coherent echoes at large magnetic aspect angles
A. V. Kustov,G. J. Sofko,J. A. Koehler,M. V. Uspensky
Annales Geophysicae (ANGEO) , 2003,
Abstract: The skewness of broad Type 2-like spectra has been studied using data collected by two orthogonal CW 50-MHz radio links with co-located scattering volumes. Geometrical aspect angles of observations were about 10°. One short event was considered. For this event, the electron flow direction was changing periodically (period about 9 minutes) presumably due to the passage of a magnetospheric MHD wave through the ionosphere. It was found that for the radar observations along the electrojet flow, the skewness had the same sign as the mean Doppler shift with average absolute values in between 0.5-1.0. For observations perpendicular to the electrojet flow, spectra were more symmetrical (average skewness was around 0) and the sign of the skewness was sometimes opposite to the sign of the mean Doppler shift. These observations are interpreted in terms of contribution from both the Farley-Buneman and gradient-drift instabilities to the resultant spectrum. Differences with radar observations at small aspect angles are discussed.
Optical, radar, and magnetic observations of magnetosheath plasma capture during a positive IMF Bz impulse
V. Safargaleev, A. Kozlovsky, T. Sergienko, T. K. Yeoman, M. Uspensky, D. M. Wright, H. Nilsson, T. Turunen,A. Kotikov
Annales Geophysicae (ANGEO) , 2008,
Abstract: We present a multi-instrument study of the ionospheric response to a northward turning of the IMF. The observations were made in the near-noon (11:00 MLT) sector on Svalbard (at 75° MLAT). The data set includes auroral observations, ionospheric flows obtained from the EISCAT and CUTLASS radars, the spectral width of the HF radar backscatter, particle precipitation and plasma flow data from the DMSP F13 satellite, and Pc1 frequency band pulsations observed by induction magnetometers. Careful collocation of all the observations has been made with the HF radar backscatter located by a ray-tracing procedure utilizing the elevation angle of arrival of the signals and an ionospheric plasma density profile. Prior to IMF turning northward, three auroral arcs were observed at the poleward boundary of the closed llbl, inside the llbl, and in the equatorward part of the llbl, respectively. The northward IMF turning was accompanied by enhanced HF radar returns with a broad Doppler spectrum collocated with the arcs. The auroral arcs shifted poleward whereas the backscatter region moved in the opposite direction, which is consistent, respectively, with reconnection beyond the cusp and the capturing of magnetosheath plasma during northward IMF. Locally, magnetic noise enhancement in the Pc1 frequency band occurred simultaneously with the anomalous radar backscatter, and the absence of such signals at more remote magnetic observatories indicates a local generation of the Pc1 turbulence, which is collocated with the radar backscatter. Finally, we discuss possible interpretation errors which may be caused by limited observational data.
HF radar observations of high-aspect angle backscatter from the E-region
S. E. Milan, M. Lester, T. K. Yeoman, T. R. Robinson, M. V. Uspensky,J.-P. Villain
Annales Geophysicae (ANGEO) , 2004,
Abstract: We present evidence for the observation of high-aspect angle HF radar backscatter from the auroral electrojets, and describe the spectral characteristics of these echoes. Such backscatter is observed at very near ranges where ionospheric refraction is not sufficient to bring the sounding radio waves to orthogonality with the magnetic field; the frequency dependence of this propagation effect is investigated with the Stereo upgrade of the CUTLASS Iceland radar. We term the occurrence of such echoes the "high-aspect angle irregularity region" or HAIR. It is suggested that backscatter is observed at aspect angles as high as 30°, with an aspect sensitivity as low as 1dB deg–1. These echoes are distinguished from normal electrojet backscatter by having low Doppler shifts with an azimuthal dependence that appears more consistent with the direction of the convection electric field than with the expected electron drift direction. This is discussed in terms of the linear theory dispersion relation for electrojet waves. Key words. Ionosphere (ionospheric irregularities; plasma waves and instabilities; auroral ionosphere)
Page 1 /488688
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.