Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 5 )

2018 ( 25 )

2017 ( 14 )

2016 ( 16 )

Custom range...

Search Results: 1 - 10 of 2488 matches for " Kazushi Yamada "
All listed articles are free for downloading (OA Articles)
Page 1 /2488
Display every page Item
Thermally Induced Nanocrystal Array of Poly(N-Vinylcarbazole) on Si-Wafer Substrate  [PDF]
Kazushi Yamada, Yasuyuki Tsuboi
Materials Sciences and Applications (MSA) , 2014, DOI: 10.4236/msa.2014.55032

Recently, nanostructures such as nanocrystals and nanoaggregates have attracted much attention in many quarters of materials, electronics, and biology to create higher-value-added functional nanoscale materials and films. In this research, the fabrication of nanoaggregates on ultrathin photoconductive films of poly(N-vinylcarbazole) (PVCz) by applying thermal treatment is demonstrated. The structure and size are discussed on the basis of the results of atomic force microscope images. As a result, after thermal treatment of these films above the glass transition temperature (Tg) of PVCz, different types of surface morphological changes were induced showing a dependence on the tacticity of PVCz. Radically polymerized PVCz(r) ultrathin film showed small aggregates with heights of ~8 nm on the film surface after thermal treatment, while cationically polymerized PVCz(c), which has higher isotactic diad fractions than PVCz(r), indicated similar aggregates on the film surface, although the number of aggregates was smaller than PVCz(r). It is considered that these different phenomena depend on the tacticity of PVCz and the interaction between PVCz molecules and the substrate surface.

Effectiveness of Talc Filler on Thermal Resistance of Recycled PET Blends  [PDF]
Kazushi Yamada, Supaphorn Thumsorn
Advances in Materials Physics and Chemistry (AMPC) , 2013, DOI: 10.4236/ampc.2013.38045

In general, high mechanical properties such as higher impact strength and thermal resistance are required for injection molded applications. Recycled PET (RPET) is well known to exhibit brittle behavior in the presence of notches and indicated the low heat distortion temperature. Therefore, we tried to improve the toughness and thermal resistance properties of RPET by incorporating E-GMA, talc filler and engineering plastics as an impact modifier and talc to increase the rigidity and heat distortion temperature of RPET. As a result, these blends with E-GMA exhibited significantly higher stiffness and strength especially with increasing E-GMA content. In addition, these blends with talc filler indicated the high heat distortion temperature due to the increase of the crystalinity of RPET blends. Therefore, it was found that talc played an important role in enhancing the heat resistance of RPET.



Study on Properties of Silver Powder for Maki-e  [PDF]
Chieko Narita, Yutaro Shimode, Kazushi Yamada
Materials Sciences and Applications (MSA) , 2015, DOI: 10.4236/msa.2015.61001
Abstract: Maki-e is a traditional Japanese decorative technique that uses the natural lacquer Urushi and metal powders. In 2014, there exist only two companies that manufacture silver powder for the purpose of Maki-e, and this study focuses on comparing the powders manufactured by them. Gloss and color of each silver powder were measured after Maki-e decoration was finished, and EDS (energy-dispersive X-ray spectroscopy) was used to determine the differences in their chemical composition. In addition, to verify the effect of polishing, residual gloss after sulfuration and polishing was measured. The study revealed that the shapes of the silver powders (Maru-fun, No. 1) manufactured by the two companies are different and it affects the occupancy rate of Urushi and powder, which in turn affects their gloss and color. Wakou silver has a very strong resistance to sulfuration; however, owing to its Pd content, its chroma is much lower than that of other powders. It was shown that sulfuration on powder surface can be removed by polishing irrespective of the shape and chemical composition ratio of the particles.
α,β-Methylene-ATP-Induced Inhibition of Acetylcholine Release on the Stellate Ganglion: Contribution of Nitric Oxide  [PDF]
Kazushi Kushiku, Hiromi Yamada, Nobufumi Ono
Neuroscience & Medicine (NM) , 2015, DOI: 10.4236/nm.2015.63022
Abstract: In this study, we investigated the possible involvement of nitric oxide pathways in the presynaptic inhibition of acetylcholine release induced by ATP analogs in dogs. We performed the study using HPLC with electrochemical detection and the nitric oxide detection-HPLC system. The amount of acetylcholine released in response to preganglionic stimulation at 5 Hz for 10 min was reduced in a concentration-dependent manner after exposure to 10-7 - 10-4 M α,β-methylene-ATP (α,β-meATP), but not by the P2Y receptor agonist, 2-methyl-thio-ATP (2MeSATP) or the P2X1 receptor agonist, β,γ-methylene-ATP (β,γ-meATP), at the same concentrations. The inhibition of acetylcholine release induced by α,β-meATP was antagonized by: the nonselective P2 receptor antagonist, pyridoxalphosphate-6-azophenyl-2’,4’-disulphonic acid (PPADS); the P2X1, P2X3 and P2X2/3 receptors antagonist, 2’-(or-3’)-O-trinitrophenyl-ATP (TNP-ATP); the neuronal nitric oxide synthase (nNOS) inhibitor, 3-bromo-7-nitroindazole; the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ); the NO scavenger, 2-(4-carboxyphenyl)-4,4,5,5-tetramethy-limidazoline-1-oxyl-3-oxide (carboxy-PTIO). Exposure to 10-5 M, but not 10-4 M, α,β-meATP, for 30 min increased the levels of , and this increase was antagonized by TNP-ATP and 3-bromo-7-nitroindazole. These results show that P2X receptor activation inhibits stellate ganglionic transmission by reducing acetylcholine release from presynaptic nerve terminals and that this inhibition seems to involve, at least in part, the activation of endogenous NO production and cGMP pathways.
Study on Characteristics of Gold Powder with Round Shape for Maki-e  [PDF]
Chieko Narita, Yutaro Shimode, Kazushi Yamada
Materials Sciences and Applications (MSA) , 2015, DOI: 10.4236/msa.2015.610086
Abstract: Maki-e is a traditional Japanese decorative technique that uses the natural lacquer Urushi and metal powders. Currently, there exist only two companies that manufacture metal powder for the purpose of Maki-e, and this research focuses on comparing the material characteristics of the gold powders with round shape manufactured by them. EDS (energy-dispersive X-ray spectroscopy) analysis, image analysis of particle shape before and after Maki-e processing, and color analysis of samples after Maki-e processing were carried out in this research. The study revealed that current gold powders with round shape had almost the same content ratio regardless of the manufacturing company and the powder diameter. In addition, spherical shape and irregular shape were observed in any gold powders, and the aggregates were observed in powder with increasing the powder diameter, while the shape of the aggregates differed with manufacturing companies. Therefore, it was indicated that the aggregates in the powder made by Asano Co., Ltd. had an influence on the particle diameter and its deviation after Maki-e processing. Moreover, the powder in Urushi resin has an influence on the Maki-e appearance because there is a color difference in polished powder, powder in Urushi resin, and Urushi resin.
Effect of Molecular Weight and Molecular Distribution on Skin Structure and Shear Strength Distribution near the Surface of Thin-Wall Injection Molded Polypropylene  [PDF]
Keisuke Maeda, Koji Yamada, Kazushi Yamada, Masaya Kotaki, Hiroyuki Nishimura
Open Journal of Organic Polymer Materials (OJOPM) , 2016, DOI: 10.4236/ojopm.2016.61001

In this study, the relationship between skin structure and shear strength distribution of thin-wall injection molded polypropylene (PP) molded at different molecular weight and molecular distribution was investigated. Skin-core structure, cross-sectional morphology, crystallinity, crystal orientation, crystal morphology and molecular orientation were evaluated by using polarized optical microscope, differential scanning calorimeter, X-ray spectroscopic analyzer and laser Raman spectroscopy, respectively, while the shear strength distribution was investigated using a micro cutting method called SAICAS (Surface And Interfacial Cutting Analysis System). The results indicated that the difference of molecular weight and molecular weight distribution showed own skin layer thickness. Especially, high molecular weight sample showed thicker layer of the lamellar orientation and molecular orientation than low molecular weight sample. In addition, wide molecular distribution sample showed large crystal orientation layer.

The Relationship between Bulk Property and Property Distribution in Thin-Wall Injection Molded PP at Different Molecular Weight and Molecular Weight Distribution  [PDF]
Keisuke Maeda, Koji Yamada, Kazushi Yamada, Masaya Kotaki, Hiroyuki Nishimura
Advances in Materials Physics and Chemistry (AMPC) , 2016, DOI: 10.4236/ampc.2016.61001
Abstract: Thin-wall injection molded parts have been paid much attention to the lightweight saving from viewpoints of natural resources saving. In the injection molding, skin-core structure can be found in the parts. This skin-core structure affects the property of completed injection molding parts (bulk property) even if in thin-wall injection molding. However, there is a few research about the relationship between bulk property and internal property distribution in the injection molding specimen. In this study, thin-wall injection molded parts of polypropylene (PP) were prepared by 4 different molecular weight and molecular weight distribution to reveal the relationship between bulk property and property distribution. These characteristics were investigated by using tensile test, fracture toughness characterized by Essential Work of Fracture (EWF) method for bulk property and film tensile test by sliced sample for tensile property distribution. The property distribution test results revealed that the highly bulk property sample had thicker highly mechanical property layer on its surface.
Development of Cockleshell-Derived CaCO3 for Flame Retardancy of Recycled PET/Recycled PP Blend  [PDF]
Supaphorn Thumsorn, Kazushi Yamada, Yew Wei Leong, Hiroyuki Hamada
Materials Sciences and Applications (MSA) , 2011, DOI: 10.4236/msa.2011.22009
Abstract: Recycled polyethylene terephthalate (RPET) and recycle polypropylene (RPP) blends filled with a renewable filler, i.e. cockleshell-derived CaCO3 (CS) were prepared as an environmental friendly thermoplastic composite. The effects of CS particle size and content on thermal stability, mechanical performance and flame retardant properties of the blends were investigated. Thermogravimetric analysis was performed to elucidate the thermal decomposition kinetics of the filled composites. The iso-conversion of the Flynn-Wall-Ozawa was developed by the second order polynomial function for thermal oxidative degradation of the blends while peak derivative temperature from the Kissinger method was able to verify the mechanism of degradation in these blends. The results indicated that both CS and commercial grade CaCO3 improved thermal stability and enhanced the stiffness as well as impact performance of the blends. However, this could only be achieved when high filler content was present in the RPET/RPP blends.
The Effect of Curative Concentration on Thermal and Mechanical Properties of Flexible Epoxy Coated Jute Fabric Reinforced Polyamide 6 Composites  [PDF]
Smith Thitithanasarn, Kazushi Yamada, Umaru S. Ishiaku, Hiroyuki Hamada
Open Journal of Composite Materials (OJCM) , 2012, DOI: 10.4236/ojcm.2012.24016
Abstract: Many researchers have shown interest in the reinforcement of commodity thermoplastic with natural fibers. However, the drawback of natural fibers is their low thermal processing temperatures, that border around 200℃. In this investigation, we tried to improve the thermal stability of natural fibers with the use of flexible epoxy surface coating that could facilitate processing with engineering thermoplastics. Jute fabric and Polyamide 6 (PA6) composites were prepared by compression molding. The thermal decomposition characteristics of the jute fabric were evaluated by using thermo gravimetric analysis (TGA). Mechanical analysis was conducted to evaluate tensile test and three point bending test of composite. It was found that thermal degradation resistance of jute fabric was improved by coating with flexible epoxy resin. Moreover, the flexural modulus improved with increasing curative concentration. The interfacial interaction between the epoxy and PA6 was clearly indicated by the photo micrographs of the polished cross sections of the coated and uncoated jute fabric/PA6 composites.
Effect of Different Eggshell Powder on Appearance of Eggshell Maki-e  [PDF]
Yutaro Shimode, Chieko Narita, Atsushi Endo, Kazushi Yamada
Materials Sciences and Applications (MSA) , 2013, DOI: 10.4236/msa.2013.42016

The Maki-e technique with eggshell powder is one of techniques of Japanese traditional Urushi (Japanese lacquer) crafts. However, this technique is relatively new in the history of Maki-e, and there are no prior researches in terms of materials, structure, and properties. In this research, therefore we have aimed to evaluate the relationship between the eggshell powder sizes, dispersion, and color shade in Maki-e with eggshell powder. The difference between hen’s and quail’s eggshell characteristics and the effect of their powder particle size on appearance of eggshell Maki-e were discussed on the basis of the results of the particle size, circularity, particle number, and RGB value. As a result, it was found that the occupancy of the eggshell powder on the surface depends on not particle number but the particle size, whereas the whiteness of both eggshell powders depends on the particle size.

Page 1 /2488
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.