Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99


Any time

2019 ( 34 )

2018 ( 68 )

2017 ( 74 )

2016 ( 80 )

Custom range...

Search Results: 1 - 10 of 23481 matches for " Jong-Won Kim "
All listed articles are free for downloading (OA Articles)
Page 1 /23481
Display every page Item
Statistics and Characteristics of Spatio-Temporally Rare Intense Events in Complex Ginzburg-Landau Models
Jong-Won Kim,Edward Ott
Physics , 2002, DOI: 10.1103/PhysRevE.67.026203
Abstract: We study the statistics and characteristics of rare intense events in two types of two dimensional Complex Ginzburg-Landau (CGL) equation based models. Our numerical simulations show finite amplitude collapse-like solutions which approach the infinite amplitude solutions of the nonlinear Schr\"{o}dinger (NLS) equation in an appropriate parameter regime. We also determine the probability distribution function (PDF) of the amplitude of the CGL solutions, which is found to be approximately described by a stretched exponential distribution, $P(|A|) \approx e^{-|A|^\eta}$, where $\eta < 1$. This non-Gaussian PDF is explained by the nonlinear characteristics of individual bursts combined with the statistics of bursts. Our results suggest a general picture in which an incoherent background of weakly interacting waves, occasionally, `by chance', initiates intense, coherent, self-reinforcing, highly nonlinear events.
Evolving Networks with Multi-species Nodes and Spread in the Number of Initial Links
Jong-Won Kim,Brian Hunt,Edward Ott
Physics , 2002, DOI: 10.1103/PhysRevE.66.046115
Abstract: We consider models for growing networks incorporating two effects not previously considered: (i) different species of nodes, with each species having different properties (such as different attachment probabilities to other node species); and (ii) when a new node is born, its number of links to old nodes is random with a given probability distribution. Our numerical simulations show good agreement with analytic solutions. As an application of our model, we investigate the movie-actor network with movies considered as nodes and actors as links.
Load-Measuring Pot Bearing with Built-In Load Cell —Part II: Fatigue Performance and Experimental Temperature Correction  [PDF]
Jeong-Rae Cho, Young Jin Kim, Jong-Won Kwark, Sung Yong Park, Won Jong Chin, Byung-Suk Kim
Engineering (ENG) , 2013, DOI: 10.4236/eng.2013.511108

This paper presents the results of fatigue performance tests performed up to 10 million cycles on a load-measuring pot bearing with built-in load cell to verify its field applicability and proposes an empirical temperature correction formula. In Part I of this work, various measurement performances of the load-measuring pot bearing were evaluated through static and dynamic loading tests. Bridge bearings are subjected to the effect of fatigue caused by the repeated application of moving loads and exposed to harsh site conditions including cold and hot weathers differently to laboratory conditions. Accordingly, the durability of the load-measuring pot bearing with built-in load cell shall be secured and the environmental effects like temperature shall be minimized for its application on field. This study conducted fatigue tests up to 10 million cycles on a load-measuring pot bearing with the capacity of 1000 kN to examine eventual degradation of the measurement accuracy with respect to the number of fatigue loading cycles. In addition, the experimental temperature correction procedure is proposed to obtain the temperature correction formula enabling to correct the effect of temperature on the load measurement.

Load-Measuring Pot Bearing with Built-In Load Cell —Part I: Design and Performance  [PDF]
Jeong-Rae Cho, Young Jin Kim, Jong-Won Kwark, Sung Yong Park, Won Jong Chin, Byung-Suk Kim
Engineering (ENG) , 2013, DOI: 10.4236/eng.2013.511104

This paper presents the underlying principle and the results of various performance evaluations for a load-measuring pot bearing with built-in load cell. The pot bearing composed of a pot made of steel in which an elastomer disk is inserted is a bearing supporting larger loads than the elastomeric bearing and accommodating rotational movement. Owing to a Poisson’s ratio close to 0.5, elastomer withstands hydrostatic pressure when confined in a rigid body. Accounting for this principle, the vertical load applied on the pot bearing can be obtained by converting the pressure acting on the elastomer. Therefore, a load-measuring pot bearing is developed in this study by embedding a load cell exhibiting remarkable durability in the base plate of the bearing. The details for the insertion of the load cell in the base plate of the pot were improved through finite element analysis to secure sufficient measurement accuracy. The evaluation of the static performance of the pot bearing applying these improved details verified that the bearing exhibited sufficient accuracy for the intended measurement purpose. The dynamic performance evaluation results indicated that accurate measurement of the dynamic load was also achieved without time lag.

Cataloging Coding Sequence Variations in Human Genome Databases
Hong-Hee Won, Hee-Jin Kim, Kyung-A Lee, Jong-Won Kim
PLOS ONE , 2008, DOI: 10.1371/journal.pone.0003575
Abstract: Background With the recent growth of information on sequence variations in the human genome, predictions regarding the functional effects and relevance to disease phenotypes of coding sequence variations are becoming increasingly important. The aims of this study were to catalog protein-coding sequence variations (CVs) occurring in genetic variation databases and to use bioinformatic programs to analyze CVs. In addition, we aim to provide insight into the functionality of the reference databases. Methodology and Findings To catalog CVs on a genome-wide scale with regard to protein function and disease, we investigated three representative databases; the Human Gene Mutation Database (HGMD), the Single Nucleotide Polymorphisms database (dbSNP), and the Haplotype Map (HapMap). Using these three databases, we analyzed CVs at the protein function level with bioinformatic programs. We proposed a combinatorial approach using the Support Vector Machine (SVM) to increase the performance of the prediction programs. By cataloging the coding sequence variations using these databases, we found that 4.36% of CVs from HGMD are concurrently registered in dbSNP (8.11% of CVs from dbSNP are concurrent in HGMD). The pattern of substitutions and functional consequences predicted by three bioinformatic programs was significantly different among concurrent CVs, and CVs occurring solely in HGMD or in dbSNP. The experimental results showed that the proposed SVM combination noticeably outperformed the individual prediction programs. Conclusions This is the first study to compare human sequence variations in HGMD, dbSNP and HapMap at the genome-wide level. We found that a significant proportion of CVs in HGMD and dbSNP overlap, and we emphasize the need to use caution when interpreting the phenotypic relevance of these concurrent CVs. Combining bioinformatic programs can be helpful in predicting the functional consequences of CVs because it improved the performance of functional predictions.
Fractal Properties of Robust Strange Nonchaotic Attractors in Maps of Two or More Dimensions
Jong-Won Kim,Sang-Yoon Kim,Brian Hunt,Edward Ott
Physics , 2002, DOI: 10.1103/PhysRevE.67.036211
Abstract: We consider the existence of robust strange nonchaotic attractors (SNA's) in a simple class of quasiperiodically forced systems. Rigorous results are presented demonstrating that the resulting attractors are strange in the sense that their box-counting dimension is N+1 while their information dimension is N. We also show how these properties are manifested in numerical experiments.
Inferring Pathway Activity toward Precise Disease Classification
Eunjung Lee ,Han-Yu Chuang ,Jong-Won Kim,Trey Ideker ,Doheon Lee
PLOS Computational Biology , 2008, DOI: 10.1371/journal.pcbi.1000217
Abstract: The advent of microarray technology has made it possible to classify disease states based on gene expression profiles of patients. Typically, marker genes are selected by measuring the power of their expression profiles to discriminate among patients of different disease states. However, expression-based classification can be challenging in complex diseases due to factors such as cellular heterogeneity within a tissue sample and genetic heterogeneity across patients. A promising technique for coping with these challenges is to incorporate pathway information into the disease classification procedure in order to classify disease based on the activity of entire signaling pathways or protein complexes rather than on the expression levels of individual genes or proteins. We propose a new classification method based on pathway activities inferred for each patient. For each pathway, an activity level is summarized from the gene expression levels of its condition-responsive genes (CORGs), defined as the subset of genes in the pathway whose combined expression delivers optimal discriminative power for the disease phenotype. We show that classifiers using pathway activity achieve better performance than classifiers based on individual gene expression, for both simple and complex case-control studies including differentiation of perturbed from non-perturbed cells and subtyping of several different kinds of cancer. Moreover, the new method outperforms several previous approaches that use a static (i.e., non-conditional) definition of pathways. Within a pathway, the identified CORGs may facilitate the development of better diagnostic markers and the discovery of core alterations in human disease.
Biochemical characterization of a recombinant Japanese encephalitis virus RNA-dependent RNA polymerase
Yeon-Gu Kim, Ji-Seung Yoo, Jung-Hee Kim, Chan-Mi Kim, Jong-Won Oh
BMC Molecular Biology , 2007, DOI: 10.1186/1471-2199-8-59
Abstract: To characterize the biochemical properties of JEV RdRp, we expressed in Escherichia coli and purified an enzymatically active full-length recombinant JEV NS5 protein with a hexahistidine tag at the N-terminus. The purified NS5 protein, but not the mutant NS5 protein with an Ala substitution at the first Asp of the RdRp-conserved GDD motif, exhibited template- and primer-dependent RNA synthesis activity using a poly(A) RNA template. The NS5 protein was able to use both plus- and minus-strand 3'-untranslated regions of the JEV genome as templates in the absence of a primer, with the latter RNA being a better template. Analysis of the RNA synthesis initiation site using the 3'-end 83 nucleotides of the JEV genome as a minimal RNA template revealed that the NS5 protein specifically initiates RNA synthesis from an internal site, U81, at the two nucleotides upstream of the 3'-end of the template.As a first step toward the understanding of the molecular mechanisms for JEV RNA replication and ultimately for the in vitro reconstitution of viral RNA replicase complex, we for the first time established an in vitro JEV RdRp assay system with a functional full-length recombinant JEV NS5 protein and characterized the mechanisms of RNA synthesis from nonviral and viral RNA templates. The full-length recombinant JEV NS5 will be useful for the elucidation of the structure-function relationship of this enzyme and for the development of anti-JEV agents.Japanese encephalitis virus (JEV) is the most common cause of epidemic viral encephalitis worldwide, with approximately 50,000 cases and 15,000 deaths annually throughout a wide geographical range [1]. Since the prototype Nakayama strain of JEV was first isolated in 1935, epidemics and sporadic cases of Japanese encephalitis have occurred in temperate and tropical zones of Asia as well as in non-Asian regions, including Cambodia, China, Indonesia, India, Japan, Malaysia, Myanmar, Nepar, Sri Lanka, Thailand, Vietnam, the south eastern Ru
Predicting National Suicide Numbers with Social Media Data
Hong-Hee Won, Woojae Myung, Gil-Young Song, Won-Hee Lee, Jong-Won Kim, Bernard J. Carroll, Doh Kwan Kim
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0061809
Abstract: Suicide is not only an individual phenomenon, but it is also influenced by social and environmental factors. With the high suicide rate and the abundance of social media data in South Korea, we have studied the potential of this new medium for predicting completed suicide at the population level. We tested two social media variables (suicide-related and dysphoria-related weblog entries) along with classical social, economic and meteorological variables as predictors of suicide over 3 years (2008 through 2010). Both social media variables were powerfully associated with suicide frequency. The suicide variable displayed high variability and was reactive to celebrity suicide events, while the dysphoria variable showed longer secular trends, with lower variability. We interpret these as reflections of social affect and social mood, respectively. In the final multivariate model, the two social media variables, especially the dysphoria variable, displaced two classical economic predictors – consumer price index and unemployment rate. The prediction model developed with the 2-year training data set (2008 through 2009) was validated in the data for 2010 and was robust in a sensitivity analysis controlling for celebrity suicide effects. These results indicate that social media data may be of value in national suicide forecasting and prevention.
Genetic Variation in CYP17A1 Is Associated with Arterial Stiffness in Diabetic Subjects
Soo Jin Yang,Seung-Tae Lee,Won Jun Kim,Se Eun Park,Sung Woo Park,Jong-Won Kim,Cheol-Young Park
Experimental Diabetes Research , 2012, DOI: 10.1155/2012/827172
Abstract: Hypertension and arterial stiffness are associated with an increasing risk of diabetes and cardiovascular diseases. This study aimed to identify genetic variants affecting hypertension and arterial stiffness in diabetic subjects and to compare genetic associations with hypertension between prediabetic and diabetic subjects. A total of 1,069 participants (326 prediabetic and 743 diabetic subjects) were assessed to determine the genetic variants affecting hypertension by analyzing 52 SNPs previously reported to be associated with hypertension. Moreover, the SNPs were tested for association with hemodynamic parameters related to hypertension. Out of the 52 SNPs analyzed, four SNPs including rs5326 (DRD1), rs1004467 (CYP17A1), rs2960306 (GRK4), and rs11191548 (near NT5C2) in diabetic subjects and rs1530440 (C10orf107) in prediabetic subjects showed a modest association with hypertension (, 0.0020, 0.0066, 0.0078, and 0.0015, resp; all were insignificant after Bonferroni correction). Of these SNPs, rs1004467 in CYP17A1 was significantly associated with augmentation index in diabetic subjects who were not taking antihypertensive medication (; corrected ) but not in diabetic subjects receiving antihypertensive medication. This finding suggests that certain genetic variations found in diabetic subjects may confer arterial stiffness and the development of hypertension and also be affected by antihypertensive medication.
Page 1 /23481
Display every page Item

Copyright © 2008-2017 Open Access Library. All rights reserved.