oalib

Publish in OALib Journal

ISSN: 2333-9721

APC: Only $99

Submit

Any time

2020 ( 24 )

2019 ( 201 )

2018 ( 246 )

2017 ( 249 )

Custom range...

Search Results: 1 - 10 of 192445 matches for " Ilse D. Jacobsen "
All listed articles are free for downloading (OA Articles)
Page 1 /192445
Display every page Item
Pathogenesis of Candida albicans Infections in the Alternative Chorio-Allantoic Membrane Chicken Embryo Model Resembles Systemic Murine Infections
Ilse D. Jacobsen,Katharina Gro?e,Angela Berndt,Bernhard Hube
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0019741
Abstract: Alternative models of microbial infections are increasingly used to screen virulence determinants of pathogens. In this study, we investigated the pathogenesis of Candida albicans and C. glabrata infections in chicken embryos infected via the chorio-allantoic membrane (CAM) and analyzed the virulence of deletion mutants. The developing immune system of the host significantly influenced susceptibility: With increasing age, embryos became more resistant and mounted a more balanced immune response, characterized by lower induction of proinflammatory cytokines and increased transcription of regulatory cytokines, suggesting that immunopathology contributes to pathogenesis. While many aspects of the chicken embryo response resembled murine infections, we also observed significant differences: In contrast to systemic infections in mice, IL-10 had a beneficial effect in chicken embryos. IL-22 and IL-17A were only upregulated after the peak mortality in the chicken embryo model occurred; thus, the role of the Th17 response in this model remains unclear. Abscess formation occurs frequently in murine models, whereas the avian response was dominated by granuloma formation. Pathogenicity of the majority of 15 tested C. albicans deletion strains was comparable to the virulence in mouse models and reduced virulence was associated with significantly lower transcription of proinflammatory cytokines. However, fungal burden did not correlate with virulence and for few mutants like bcr1Δ and tec1Δ different outcomes in survival compared to murine infections were observed. C. albicans strains locked in the yeast stage disseminated significantly more often from the CAM into the embryo, supporting the hypothesis that the yeast morphology is responsible for dissemination in systemic infections. These data suggest that the pathogenesis of C. albicans infections in the chicken embryo model resembles systemic murine infections but also differs in some aspects. Despite its limitations, it presents a useful alternative tool to pre-screen C. albicans strains to select strains for subsequent testing in murine models.
Serial Passaging of Candida albicans in Systemic Murine Infection Suggests That the Wild Type Strain SC5314 Is Well Adapted to the Murine Kidney
Anja Lüttich, Sascha Brunke, Bernhard Hube, Ilse D. Jacobsen
PLOS ONE , 2013, DOI: 10.1371/journal.pone.0064482
Abstract: The opportunistic fungal pathogen Candida albicans has a remarkable ability to adapt to unfavorable environments by different mechanisms, including microevolution. For example, a previous study has shown that passaging through the murine spleen can cause new phenotypic characteristics. Since the murine kidney is the main target organ in murine Candida sepsis and infection of the spleen differs from the kidney in several aspects, we tested whether C. albicans SC5314 could evolve to further adapt to infection and persistence within the kidney. Therefore, we performed a long-term serial passage experiment through the murine kidney of using a low infectious dose. We found that the overall virulence of the commonly used wild type strain SC5314 did not change after eight passages and that the isolated pools showed only very moderate changes of phenotypic traits on the population level. Nevertheless, the last passage showed a higher phenotypic variability and a few individual strains exhibited phenotypic alterations suggesting that microevolution has occurred. However, the majority of the tested single strains were phenotypically indistinguishable from SC5314. Thus, our findings indicate that characteristics of SC5314 which are important to establish and maintain kidney infection over a prolonged time are already well developed.
The Two-Component Sensor Kinase TcsC and Its Role in Stress Resistance of the Human-Pathogenic Mold Aspergillus fumigatus
Allison McCormick, Ilse D. Jacobsen, Marzena Broniszewska, Julia Beck, Jürgen Heesemann, Frank Ebel
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038262
Abstract: Two-component signaling systems are widespread in bacteria, but also found in fungi. In this study, we have characterized TcsC, the only Group III two-component sensor kinase of Aspergillus fumigatus. TcsC is required for growth under hyperosmotic stress, but dispensable for normal growth, sporulation and conidial viability. A characteristic feature of the ΔtcsC mutant is its resistance to certain fungicides, like fludioxonil. Both hyperosmotic stress and treatment with fludioxonil result in a TcsC-dependent phosphorylation of SakA, the final MAP kinase in the high osmolarity glycerol (HOG) pathway, confirming a role for TcsC in this signaling pathway. In wild type cells fludioxonil induces a TcsC-dependent swelling and a complete, but reversible block of growth and cytokinesis. Several types of stress, such as hypoxia, exposure to farnesol or elevated concentrations of certain divalent cations, trigger a differentiation in A. fumigatus toward a “fluffy” growth phenotype resulting in white, dome-shaped colonies. The ΔtcsC mutant is clearly more susceptible to these morphogenetic changes suggesting that TcsC normally antagonizes this process. Although TcsC plays a role in the adaptation of A. fumigatus to hypoxia, it seems to be dispensable for virulence.
Pyomelanin Formation in Aspergillus fumigatus Requires HmgX and the Transcriptional Activator HmgR but Is Dispensable for Virulence
Sophia Keller, Juliane Macheleidt, Kirstin Scherlach, Jeannette Schmaler-Ripcke, Ilse D. Jacobsen, Thorsten Heinekamp, Axel A. Brakhage
PLOS ONE , 2011, DOI: 10.1371/journal.pone.0026604
Abstract: The opportunistic human pathogenic fungus Aspergillus fumigatus is able to produce the dark brown pigment pyomelanin by degradation of L-tyrosine. Pyomelanin was shown to protect the fungus against reactive oxygen intermediates as well as cell wall disturbing compounds and is therefore assumed to protect against immune effector cells during the infection process. Several genes for tyrosine degradation and pyomelanin formation are organized in a cluster in the genome of A. fumigatus. Here, we aimed at further analyzing tyrosine degradation and a possible role of pyomelanin in virulence. For this purpose, the function of two not yet characterized genes of the cluster, i.e., hmgX and hmgR, was analyzed. Generation of corresponding gene deletion mutants and reconstituted strains revealed that hmgX and hmgR are essential for tyrosine degradation. Both mutants, ΔhmgX and ΔhmgR, were not able to use tyrosine as sole carbon or nitrogen source and revealed impaired pyomelanin production. HmgR harbors a Zn(II)2Cys6-DNA binding domain. Analyses of the steady state mRNA levels revealed that HmgR acts as a transcriptional activator for the genes of the tyrosine degradation cluster. Consistently, an HmgR-eGFP fusion protein was localized in the nucleus of A. fumigatus cells. By contrast, HmgX was found to be localized in the cytoplasm and does not contribute to regulation of gene transcription. HPLC analyses showed that HmgX is crucial for the conversion of p-hydroxyphenylpyruvate to homogentisic acid, the main intermediate in pyomelanin formation. Thus, HmgX is supposed to function as an accessory factor to mediate specific activity of HppD. Remarkably, the ability to degrade tyrosine and to form pyomelanin is dispensable for virulence of A. fumigatus in a murine infection model.
The Novel Candida albicans Transporter Dur31 Is a Multi-Stage Pathogenicity Factor
Fran?ois L. Mayer,Duncan Wilson,Ilse D. Jacobsen,Pedro Miramón,Katharina Gro?e,Bernhard Hube
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002592
Abstract: Candida albicans is the most frequent cause of oral fungal infections. However, the exact pathogenicity mechanisms that this fungus employs are largely unknown and many of the genes expressed during oral infection are uncharacterized. In this study we sought to functionally characterize 12 previously unknown function genes associated with oral candidiasis. We generated homozygous knockout mutants for all 12 genes and analyzed their interaction with human oral epithelium in vitro. Eleven mutants caused significantly less epithelial damage and, of these, deletion of orf19.6656 (DUR31) elicited the strongest reduction in pathogenicity. Interestingly, DUR31 was not only involved in oral epithelial damage, but in multiple stages of candidiasis, including surviving attack by human neutrophils, endothelial damage and virulence in vivo. In silico analysis indicated that DUR31 encodes a sodium/substrate symporter with 13 transmembrane domains and no human homologue. We provide evidence that Dur31 transports histatin 5. This is one of the very first examples of microbial driven import of this highly cytotoxic antimicrobial peptide. Also, in contrast to wild type C. albicans, dur31Δ/Δ was unable to actively increase local environmental pH, suggesting that Dur31 lies in the extracellular alkalinization hyphal auto-induction pathway; and, indeed, DUR31 was required for morphogenesis. In agreement with this observation, dur31Δ/Δ was unable to assimilate the polyamine spermidine.
Candida albicans Scavenges Host Zinc via Pra1 during Endothelial Invasion
Francesco Citiulo,Ilse D. Jacobsen,Pedro Miramón,Lydia Schild,Sascha Brunke,Peter Zipfel,Matthias Brock,Bernhard Hube ,Duncan Wilson
PLOS Pathogens , 2012, DOI: 10.1371/journal.ppat.1002777
Abstract: The ability of pathogenic microorganisms to assimilate essential nutrients from their hosts is critical for pathogenesis. Here we report endothelial zinc sequestration by the major human fungal pathogen, Candida albicans. We hypothesised that, analogous to siderophore-mediated iron acquisition, C. albicans utilises an extracellular zinc scavenger for acquiring this essential metal. We postulated that such a “zincophore” system would consist of a secreted factor with zinc-binding properties, which can specifically reassociate with the fungal cell surface. In silico analysis of the C. albicans secretome for proteins with zinc binding motifs identified the pH-regulated antigen 1 (Pra1). Three-dimensional modelling of Pra1 indicated the presence of at least two zinc coordination sites. Indeed, recombinantly expressed Pra1 exhibited zinc binding properties in vitro. Deletion of PRA1 in C. albicans prevented fungal sequestration and utilisation of host zinc, and specifically blocked host cell damage in the absence of exogenous zinc. Phylogenetic analysis revealed that PRA1 arose in an ancient fungal lineage and developed synteny with ZRT1 (encoding a zinc transporter) before divergence of the Ascomycota and Basidiomycota. Structural modelling indicated physical interaction between Pra1 and Zrt1 and we confirmed this experimentally by demonstrating that Zrt1 was essential for binding of soluble Pra1 to the cell surface of C. albicans. Therefore, we have identified a novel metal acquisition system consisting of a secreted zinc scavenger (“zincophore”), which reassociates with the fungal cell. Furthermore, functional similarities with phylogenetically unrelated prokaryotic systems indicate that syntenic zinc acquisition loci have been independently selected during evolution.
The Candida albicans-Specific Gene EED1 Encodes a Key Regulator of Hyphal Extension
Ronny Martin,Gary P. Moran,Ilse D. Jacobsen,Antje Heyken,Jenny Domey,Derek J. Sullivan,Oliver Kurzai,Bernhard Hube
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0018394
Abstract: The extension of germ tubes into elongated hyphae by Candida albicans is essential for damage of host cells. The C. albicans-specific gene EED1 plays a crucial role in this extension and maintenance of filamentous growth. eed1Δ cells failed to extend germ tubes into long filaments and switched back to yeast growth after 3 h of incubation during growth on plastic surfaces. Expression of EED1 is regulated by the transcription factor Efg1 and ectopic overexpression of EED1 restored filamentation in efg1Δ. Transcriptional profiling of eed1Δ during infection of oral tissue revealed down-regulation of hyphal associated genes including UME6, encoding another key transcriptional factor. Ectopic overexpression of EED1 or UME6 rescued filamentation and damage potential in eed1Δ. Transcriptional profiling during overexpression of UME6 identified subsets of genes regulated by Eed1 or Ume6. These data suggest that Eed1 and Ume6 act in a pathway regulating maintenance of hyphal growth thereby repressing hyphal-to-yeast transition and permitting dissemination of C. albicans within epithelial tissues.
Persistence versus Escape: Aspergillus terreus and Aspergillus fumigatus Employ Different Strategies during Interactions with Macrophages
Silvia Slesiona, Markus Gressler, Michael Mihlan, Christoph Zaehle, Martin Schaller, Dagmar Barz, Bernhard Hube, Ilse D. Jacobsen, Matthias Brock
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0031223
Abstract: Invasive bronchopulmonary aspergillosis (IBPA) is a life-threatening disease in immunocompromised patients. Although Aspergillus terreus is frequently found in the environment, A. fumigatus is by far the main cause of IBPA. However, once A. terreus establishes infection in the host, disease is as fatal as A. fumigatus infections. Thus, we hypothesized that the initial steps of disease establishment might be fundamentally different between these two species. Since alveolar macrophages represent one of the first phagocytes facing inhaled conidia, we compared the interaction of A. terreus and A. fumigatus conidia with alveolar macrophages. A. terreus conidia were phagocytosed more rapidly than A. fumigatus conidia, possibly due to higher exposure of β-1,3-glucan and galactomannan on the surface. In agreement, blocking of dectin-1 and mannose receptors significantly reduced phagocytosis of A. terreus, but had only a moderate effect on phagocytosis of A. fumigatus. Once phagocytosed, and in contrast to A. fumigatus, A. terreus did not inhibit acidification of phagolysosomes, but remained viable without signs of germination both in vitro and in immunocompetent mice. The inability of A. terreus to germinate and pierce macrophages resulted in significantly lower cytotoxicity compared to A. fumigatus. Blocking phagolysosome acidification by the v-ATPase inhibitor bafilomycin increased A. terreus germination rates and cytotoxicity. Recombinant expression of the A. nidulans wA naphthopyrone synthase, a homologue of A. fumigatus PksP, inhibited phagolysosome acidification and resulted in increased germination, macrophage damage and virulence in corticosteroid-treated mice. In summary, we show that A. terreus and A. fumigatus have evolved significantly different strategies to survive the attack of host immune cells. While A. fumigatus prevents phagocytosis and phagolysosome acidification and escapes from macrophages by germination, A. terreus is rapidly phagocytosed, but conidia show long-term persistence in macrophages even in immunocompetent hosts.
Lichtheimia Species Exhibit Differences in Virulence Potential
Volker U. Schwartze, Kerstin Hoffmann, Ildikó Nyilasi, Tamás Papp, Csaba Vágv?lgyi, Sybren de Hoog, Kerstin Voigt, Ilse D. Jacobsen
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0040908
Abstract: Although the number of mucormycosis cases has increased during the last decades, little is known about the pathogenic potential of most mucoralean fungi. Lichtheimia species represent the second and third most common cause of mucormycosis in Europe and worldwide, respectively. To date only three of the five species of the genus have been found to be involved in mucormycosis, namely L. corymbifera, L. ramosa and L. ornata. However, it is not clear whether the clinical situation reflects differences in virulence between the species of Lichtheimia or whether other factors are responsible. In this study the virulence of 46 strains of all five species of Lichtheimia was investigated in chicken embryos. Additionally, strains of the closest-related genus Dichotomocladium were tested. Full virulence was restricted to the clinically relevant species while all strains of L. hyalospora, L. sphaerocystis and Dichotomocladium species were attenuated. Although virulence differences were present in the clinically relevant species, no connection between origin (environmental vs clinical) or phylogenetic position within the species was observed. Physiological studies revealed no clear connection of stress resistance and carbon source utilization with the virulence of the strains. Slower growth at 37°C might explain low virulence of L. hyalospora, L. spaherocystis and Dichotomocladium; however, similarly slow growing strains of L. ornata were fully virulent. Thus, additional factors or a complex interplay of factors determines the virulence of strains. Our data suggest that the clinical situation in fact reflects different virulence potentials in the Lichtheimiaceae.
Small but Crucial: The Novel Small Heat Shock Protein Hsp21 Mediates Stress Adaptation and Virulence in Candida albicans
Fran?ois L. Mayer, Duncan Wilson, Ilse D. Jacobsen, Pedro Miramón, Silvia Slesiona, Iryna M. Bohovych, Alistair J. P. Brown, Bernhard Hube
PLOS ONE , 2012, DOI: 10.1371/journal.pone.0038584
Abstract: Small heat shock proteins (sHsps) have multiple cellular functions. However, the biological function of sHsps in pathogenic microorganisms is largely unknown. In the present study we identified and characterized the novel sHsp Hsp21 of the human fungal pathogen Candida albicans. Using a reverse genetics approach we demonstrate the importance of Hsp21 for resistance of C. albicans to specific stresses, including thermal and oxidative stress. Furthermore, a hsp21Δ/Δ mutant was defective in invasive growth and formed significantly shorter filaments compared to the wild type under various filament-inducing conditions. Although adhesion to and invasion into human-derived endothelial and oral epithelial cells was unaltered, the hsp21Δ/Δ mutant exhibited a strongly reduced capacity to damage both cell lines. Furthermore, Hsp21 was required for resisting killing by human neutrophils. Measurements of intracellular levels of stress protective molecules demonstrated that Hsp21 is involved in both glycerol and glycogen regulation and plays a major role in trehalose homeostasis in response to elevated temperatures. Mutants defective in trehalose and, to a lesser extent, glycerol synthesis phenocopied HSP21 deletion in terms of increased susceptibility to environmental stress, strongly impaired capacity to damage epithelial cells and increased sensitivity to the killing activities of human primary neutrophils. Via systematic analysis of the three main C. albicans stress-responsive kinases (Mkc1, Cek1, Hog1) under a range of stressors, we demonstrate Hsp21-dependent phosphorylation of Cek1 in response to elevated temperatures. Finally, the hsp21Δ/Δ mutant displayed strongly attenuated virulence in two in vivo infection models. Taken together, Hsp21 mediates adaptation to specific stresses via fine-tuning homeostasis of compatible solutes and activation of the Cek1 pathway, and is crucial for multiple stages of C.?albicans pathogenicity. Hsp21 therefore represents the first reported example of a small heat shock protein functioning as a virulence factor in a eukaryotic pathogen.
Page 1 /192445
Display every page Item


Home
Copyright © 2008-2017 Open Access Library. All rights reserved.